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Abstract
Recently, machine unlearning, which seeks to erase specific data
stored in the pre-trained or fine-tuned models, has emerged as
a crucial protective measure for LLMs. However, unlearning ap-
proaches for LLMs that have been considered thus far have focused
on the removal of independent data points and have not taken into
account that the stored facts are logically connected to one another
and form an implicit knowledge graph. To facilitate the develop-
ment of structural unlearning methods, which are essential for the
practical application of unlearning, we propose PISTOL, a pipeline
for compiling multi-scenario datasets for benchmarking structural
LLM unlearning. Additionally, leveraging sample datasets synthe-
sized using PISTOL, we conducted benchmarks with four distinct
unlearning methods on both Llama2-7B andMistral-7Bmodels. This
analysis helps to illustrate the prevailing challenges in effectively
and robustly removing highly inter-connected data, batched data,
or data skewed towards a specific domain. It also highlights the
choice of pre-trained model can impact unlearning performance.
This work not only advances our understandings on the limitation
of current LLMs unlearning methods and proposes future research
directions, but also provides a replicable framework for ongoing
exploration and validation in the field.
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1 Introduction
Large language models (LLMs) have shown impressive capabilities
in natural language generation, aiding in diverse applications from
goal-oriented dialogues to general writing assistance [3, 8], and
often achieving human-like quality [2]. However, their generation
is not always appropriate for all audiences, due to issues such as
generating biased or toxic content, memorizing personally iden-
tifiable information (PII), and producing inaccurate or outdated
information [4, 5, 30, 46, 47, 63]. Additionally, LLMs are trained
on vast web-based datasets comprising trillions of tokens, which
complicates data management and updates due to the impracti-
cality and high costs of re-training from scratch when data needs
∗Both authors contributed equally to this research.

to be modified or removed for privacy, security, or commercial
reasons [14, 29, 64]. Addressing these challenges is crucial for the
safe deployment of LLMs, ensuring they meet the diverse needs of
different user groups and sectors.

Fundamentally, these undesirable behaviors are caused by a lack
of control over what information should be kept in large language
models. In this sense, the extensive pre-training corpora, upon
which LLMs depend for acquiring valuable knowledge and intel-
ligence, simultaneously act as sources of unintended behaviors.
Hence, one straightforward way to eliminate these behaviors is to
retrain the model on a new dataset which deletes “bad” data points
that cause the unwanted behaviors. However, naively retraining
LLMs or adapting them on new datasets [50] has been well known
to be highly inefficient in multiple lines of NLP research [24, 41, 71]
due to significant computation cost and data requirements [11]. As
an alternative remedy, machine unlearning (MU) [7, 48], originally
proposed for classification models, has been extended to delete
undesirable data and model capabilities for large language models,
namely LLM unlearning [39, 70].

Additionally, the demand for data unlearning is rising due to
increased scrutiny over transparency in data usage for training
LLMs and concerns regarding the rights of developers to access and
use such data. For instance, GDPR, grants individuals the right to
access all information held by service providers, including details on
how data is used for ML training (Art.15, Rec.63 & 64). Similarly, the
EU AI Act mandates that model providers publish a comprehensive
summary of training data content (Art.52c). In the US, legal cases
like "Times v OpenAI" spotlight the debate over copyright laws’
applicability to AI training, leading to broader discussions about
prompting legislativemeasures such as the Generative AI Copyright
Disclosure Bill in the US House of Representatives [56] to enhance
transparency and accountability. These regulatory developments
emphasize the importance of effective data erasure practices in
ensuring LLMs’ legal compliance.

Despite being a promising direction, LLM unlearning remains
nascent. This line of research is particularly hampered by the ab-
sence of a clear definition of unlearning outcome, a consensus on
the criteria for true forgetting by LLMs, and robust benchmarks
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Figure 1: Illustration of Structural Unlearning.

for evaluation [49]. Additionally, as LLM unlearning has the po-
tential to serve as a mechanism of addressing structural security
and safety issues within LLM systems, such as rectifying the over-
representation of specific entities to mitigate biases or facilitating
the processing of unlearning requests from parties exercising their
right to be forgotten (as stipulated by Art. 17 of the GDPR) [1], a re-
alistic structural benchmark dataset is particularly needed to assess
the true effectiveness of LLM unlearning algorithms.

Our work aims to improve the evaluation of LLM unlearning
algorithms by contributing a novel dataset compilation pipeline
that is able to synthesize datasets which reflect the realistic LLM
unlearning needs and mirror real-world data structures. Specifi-
cally, we noticed that real data are not always independent. Data
points are often inter-connected, creating knowledge graphs with
intricate topologies. As such, real-world unlearning usage extends
beyond simple deletion, which traditionally focuses on removing
independent data points from LLMs [40]. Instead, it necessitates
structural data deletion, which facilitates the comprehensive removal
of a specific entity’s data, irrespective of its inter-connectivity with
other entities, or its size and category (illustrated in Figure 1). Such
graph-type relationships among data points present a challenge to
enforce forgetting over a single data point as forgetting one data
might impact the retaining/forgetting of the other. Furthermore,
to conduct a systematic evaluation of the unlearning performance,
it is essential to verify that the pre-trained model has effectively
learned and retained the data prior to unlearning. It is crucial to
ensure that this data is entirely independent of the pre-training
dataset, thereby isolating the unlearning effects from the influences
of the initial model training.

Therefore, we summarize our key contributions as follows:
• A novel dataset compilation pipeline that supports
multi-scenario structural LLM unlearning evaluation.
We proposed PISTOL, an easy-to-use and versatile pipeline
that enables the research community to synthesize customized,
knowledge-graph-type datasets to explore problems in struc-
tural LLMs unlearning. Also by design, PISTOL does not rely
on pre-trained models to generate synthetic data, thereby
minimizing the confounding risk.

• Impact of data topology on unlearning performance
We benchmarked four mainstream LLM unlearning methods

using sample datasets compiled with PISTOL. The results
reveal that the degree of inter-connectivity of a data point
positively correlates with the difficulty of unlearning. Ad-
ditionally, unlearning data skewed towards a specific do-
main often leads to a more pronounced deterioration in the
retained model’s performance on that same domain. Fur-
thermore, results highlight the sensitivity to the size of the
forget dataset and the learning rate, indicating that current
unlearning methods lack robustness and may struggle to
handle unlearning requests effectively at scale.

• Impact of pre-trained model on unlearning perfor-
mance. We also benchmarked new unlearning scenarios
on both Llama2-7B and Mistral-7B models. The results in-
dicate that the choice of pre-trained model does influence
unlearning performance, with the degree of impact vary-
ing based on task / method related factors. We therefore
recommend the incorporation of unlearning performance
evaluation, especially its robustness in relation to real-world
data topology, into the broader assessment frameworks for
pre-trained LLMs.

2 Related Works and Open Problems
Related works. Although unlearning is increasingly recognized

for its importance and potential, it remains an under-explored area.
Previous works on machine unlearning were predominantly fo-
cused on classification models [18, 19, 31, 62]. Some more recent
studies [10, 27, 28, 71] have considered text generation. However,
each of these works addresses a specific problem, such as detoxi-
fying undesirable generations, instead of the general unlearning
behaviors due to limitations in the datasets used. Besides, many re-
cent works studied model editing, a concept closely connected with
unlearning. One stream of model editing frameworks is training
hypernetwork knowledge editors based on various meta-learning
methods [15, 23, 44, 45, 58]. The other stream leverages insights in
the LLM knowledge localization [15–17, 42, 54, 57] to edit models di-
rectly [42, 43, 67]. However, these works did not consider structural
relationships between editing targets and would also require more
robust verification that, by replacing model output with the new
data, the model truly removes the old data accurately and locally.
Additionally, a few survey papers [39, 48] start drawing insightful
connections between LLM unlearning and other related areas such
as model explainability, adversarial training, and reinforcement
learning.

Meanwhile, evaluations of unlearning methods are often con-
ducted in an ad hoc manner, marked by the absence of a clearly
defined problem and the lack of a standardized benchmark within
the community. TOFU [40], a recently created dataset for LLM un-
learning, is composed of the profiles of 400 fictitious authors, each
associated with 20 question-answer pairs. Our work is different
from TOFU from several perspectives. First, PISTOL not only allows
the synthesis of independent data points but also enables the design
and creation of knowledge graphs that entail inter-connectivity
between subjects. Secondly, given the infinite variety of knowl-
edge graph topologies, PISTOL is not designed to be a single static
dataset but rather an easy-to-use and versatile pipeline that can be
leveraged by the community to design and synthesize their own
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datasets to explore specific problems in structural unlearning of
LLMs. Thirdly, PISTOL does not depend on GPT or any other pre-
trained models for generating synthetic data, minimizing the risk
of confounders. The QA pairs are also designed to have a more
consistent querying mechanism across entities for robust evalua-
tions. Additionally, [66] studied the latent multi-hop reasoning for
LLMs by preparing a factual dataset consisting of data points with
two-hop conductive relationships between two entities through a
’bridge entity’. Our work is different since the synthetic nature of
PISTOL allows researchers to control the length and structure of
relationships.

Open problems. As PISTOL enables us to compile structural datasets,
we aim to shed light on the role that data topology plays in un-
learning: first, will data inter-connectivity and the size of the forget
set impact the unlearning performance? Then, how will the forget-
ting data type influence the retained model’s performance on the
same and different types of data? Finally, given the issues identified
above, will the choice of pre-trained model materially affect the
unlearning performance?

This work intends to address the limitations of previous datasets,
especially the lack of a structural dataset that reflects knowledge-
graph-based data topology. By developing an easy-to-use and ver-
satile pipeline, researcher can easily design and synthesize their
own datasets for investigating the role that data structure or topol-
ogy plays in the process of unlearning. While we leave to future
research the creation of a specific large and complex dataset, we
intend to advance the understanding of LLM unlearning methods
by answering the questions above.

3 The Dataset Compilation Pipeline and Sample
Datasets

Dataset Compilation Pipeline. To effectively represent real-world
data topologies and achieve the goal of creating a graph-type dataset
that is easily expandable in terms of structure and temporal features,
contracts are proposed as a good data type because: (i) they clearly
delineate the connections between at least two signing entities; (ii)
entities may engage in multiple contracts, thus forming a network
of relationships; (iii) compared to more variable data types like
news articles or books, contracts usually follow a structured format,
allowing for more consistent querying and measurements when
unlearning methods are implemented across different edges in the
network; (iv) structural expansion of the dataset or the incorpora-
tion of more complex topologies (such as varying data types) can
be readily achieved by adding contracts with diverse attributes; (v)
additional features may be incorporated (for example, temporal
features can be added to test the unlearning of outdated data points
by adjusting the contract date).

The pipeline for compiling datasets in a controlled manner is il-
lustrated in Figure 2. The first step is to craft the overall knowledge-
graph structure, taking into account the structural variation of
unlearning and the specific problem to investigate. Then, we set
the contract template, each with 20 attributes to be filled in. In our
Sample Dataset 1 as depicted in Figure 4, we focused on two ubiq-
uitous types of contracts, sales of goods and employment contracts,
owing to their more standardized structure in contrast to other
highly customized agreements like corporate sale and purchase

agreements or share subscription agreements. Subsequently, we
generate attributes in a random manner, taking into account the
dataset size. In our sample datasets, we randomly generate 6 letters
and a suffix for a company name (e.g. Empblq LLC), 4 letters for the
first name and the surname of a person (e.g. Jkeq Cyfz), 3 numbers,
6 letters and a street type for an address (e.g. 442 Rcvvyy Boulevard).
Other attributes such as the signing date, contractual terms, and
governing jurisdiction are also randomly generated. Finally, we
prepare a QA pair for each attribute. QA pairs follow a consistent
querying mechanism and have concise answers to allow systematic
evaluations. Templates of both types of contracts and detailed QA
of our sample datasets are provided in Appendix A. Based on the
PISTOL, we construct two different sample datasets as described
below for our unlearning evaluations.

Each sample dataset is organized into columns of questions,
answers, and edges, to facilitate easier selection of unlearning edges.
The edge features in Sample Dataset 1 consisted of the placeholder
name, such as 𝐴𝐶 , as indicated in Figure 4. In Sample Dataset
2, each interconnected sub-component consists of 10 nodes. The
nodes are sequentially numbered: 0 − 9 for the sparse sub-graph,
10 − 19 for the semi-dense sub-graph, and 20 − 29 for the dense
sub-graph. The sparse sub-component has a chain structure, with
edges sequentially connecting nodes from 0 to 9. The semi-dense
sub-component contains 27 edges. The dense sub-component is
a fully-connected sub-graph, meaning every pair of nodes within
the sub-graph is linked by an edge. The dataset can be found in
Hugging Face 1.

Sample Dataset 1. We first envisage a basic topology for the data
structure, as depicted in Figure 4. As explained in Section 2, we
intend to leave the construction of large and bespoke graphs to fu-
ture research and choose a basic graph with a structure of𝐺 (24, 20)
topology (24 nodes and 20 edges) to answer the proposed open
questions. The graph contains two types of data – sales contracts
between companies or employment contracts between companies
and individuals. Note that entity references, such as ‘𝐴’ or ‘𝐵’, are
placeholders instead of the real entity names in the dataset for easy
reference in the experiments. Entity 𝐴 is the central entity with the
highest degree of 8, connecting to different types of nodes. Node
𝐸, 𝐹, 𝑞 form an independent connected component isolated from
the rest of the nodes, providing an extra level of evaluation.

Sample Dataset 2. The Sample Dataset 1 has the benefits of being
both concise and useful to test multiple unlearning scenarios with a
single condensed dataset. While its symmetric structure allows the
isolation of topological impact when evaluating other structural
features such as the size and type of the forgetting edges, it means
that sampling different unlearning edges does not yield topological
variations and, therefore, only provides a local view of the impact of
data inter-connectivity. To achieve greater sampling variability and
verify our findings with respect to data inter-connectivity under
the Sample Dataset 1, we designed and constructed another dataset
utilizing PISTOL pipeline which comprises 3 sub-graphs – each
has 10 nodes but different inter-connectivity (edges). The most
data sparse sub-graph has 9 edges (i.e. connecting each node by a
chain). On the opposite end, the most data dense sub-graph has 45

1https://huggingface.co/datasets/xinchiqiu/PISTOL

https://huggingface.co/datasets/xinchiqiu/PISTOL
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Figure 2: Illustration of the Dataset Compilation Pipeline.

Figure 3: Structure of Sample Dataset 1.

Figure 4: Structure of Sample Dataset 2.

edges (i.e. nodes are fully connected). The sub-graph in between is
semi-dense and has 21 edges. As Sample Dataset 2 is designed for
evaluating data inter-connectivity from a global view, we isolate
the data type to be sales contracts between companies.

4 New Structural Unlearning Tasks
Despite the basic topology, sample datasets enable multi-faceted
and diverse-scenario LLM unlearning. Following the concept of
structural LLM unlearning which we proposed in Section 1 and
according to open questions which we proposed in Section 2, in
this section, we categorize new structural unlearning tasks, state
their real-world applications as well as importance, and describe
evaluation methods. (Please note for clarity that Sample Dataset 2
is only used to verify and extend our findings with respect to data
inter-connectivity as explained below).

Q1: How will data inter-connectivity impact the unlearning perfor-
mance? Previous studies of LLM unlearning have primarily focused
on forgetting independent data points, neglecting the consideration
of inter-connected data points. However, in real-world, data points
can be conceptualized as parcels of information, forming edges that
connect together various subjects as nodes in knowledge graphs. It
is natural for some entities to feature more prominently in numer-
ous data points than others. As such, structural LLM unlearning
underscores a genuine need as unlearning requests may originate
from or relate to subjects with varying levels of inter-connectivity.
For instance, for stories that are found untrue and need to be forgot-
ten, their subjects may have varying degrees of exposure to other
stories that are true and should be retained. An ideal unlearning
algorithm should be robust enough to handle unlearning requests
involving varying degrees of data inter-connectivity, minimizing
the need for bespoke efforts in each scenario, such as extensive
learning rate tuning.

To measure the effect of data inter-connectivity, we define the
inter-connectivity of a data point (edge) by the total degree of
vertices (entities) that it connects, i.e. 𝑑𝑒𝑔(𝑒𝑖 ) =

∑
𝑣∈𝑒𝑖 𝑑𝑒𝑔(𝑣) − 1.

The higher the degree, the more inter-connected the data point is. In
Sample Dataset 1, company 𝐴 and 𝐵 have signed 8 and 7 contracts
respectively (incl. the contract between𝐴 and 𝐵). As such, edge𝐴𝐵,
with a degree 14, has a higher inter-connectivity than edge𝐴𝐶 , with
a degree 8. We can then evaluate the impact of inter-connectivity by
comparing the outcomes of unlearning two contracts of the same
type but with varying levels of inter-connectivity (e.g. unlearn sales
contract 𝐴𝐵 and 𝐴𝐶 , respectively).

As explained in Section 3, Sample Dataset 1 provides a local
view of data inter-connectivity due to its symmetric structure. To
extend beyond a local view, we take advantage of asymmetric nature
of Sample Dataset 2 by randomly sampling an edge to forget 5
times for each sub-graph and measuring the averaged result. It not
only serves to verify our findings with Sample Dataset 1 but also
evaluates, from a global view of data inter-connectivity, whether
data density impacts unlearning performance.

Q2: How will the size of the forget set affect the unlearning perfor-
mance? Reliable unlearning at scale is a genuine need as unlearning
requests may consist of varying numbers of forgetting data points
at each time. Consider a similar scenario as above, when stories
featured in multiple articles are found to be untrue and need to be
unlearned, an ideal unlearning algorithm should be robust enough
to handle unlearning requests involving all related articles, regard-
less how many are there.

However, scalable methods that have been proposed so far are
primarily related to model editing [43], and have been shown to be
unstable and lead to gradual and catastrophic forgetting [21]. In the
absence of a reliable iterative unlearning method, we consider the
case of ‘batched unlearning’ and ask what is the impact of the forget
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size on the unlearning performance. The evaluation is facilitated by
unlearning varying numbers of contracts in Sample Dataset 1, each
of which belongs to the same type and exhibits the same level of
inter-connectivity. As depicted in Figure 4, we compare unlearning
a single sales contract, 𝐴𝐶 , with unlearning several sales contracts,
such as 𝐴𝐶 , 𝐴𝐶2 and 𝐴𝐶3.

Q3: When the forgetting data skewed towards a specific type, will
it result in a more pronounced deterioration in the retained model’s
performance on that same data type as compared to other data types?
This question underscores a real need, as unlearning requests may
specifically target certain data types (e.g. one of the two contract
types in Sample Dataset 1) rather than encompassing a mix of all
data types, as reflected by their proportional representation in the
training set. For the first time, we investigate how such targeted
unlearning affects the outcomes, particularly examining whether it
leads to uneven performance on the retained data of both the same
and different types.

We specifically designed a unique structure of Sample Dataset 1
compiled using PISTOL for this unlearning task. Due to the specific
structure, we can isolate the impact of data type by maintaining
fixed inter-connectivity and forget set size while exclusively un-
learning contracts from different domains. As illustrated in Figure
4, we contrast unlearning a sales contract between company 𝐴
and company 𝐶 with unlearning an employment contract between
company 𝐴 and individual 𝑛. We compare the model utility post-
unlearning by evaluating on the independent retained sale edge
(𝐸𝐹 ) and independent retained employment edge (𝐸𝑞) respectively.
As both 𝐸𝐹 and 𝐸𝑞 are from an isolated sub-graph as shown in
Figure 4, it isolates the impact of forgetting data type from con-
founding factors such as data inter-connectivity and the size of the
forget set.

Q4: Will the choice of pre-trained model affect the unlearning
performance? As the capabilities of LLMs continue to grow and
their integration into real-world applications deepens, the scope of
evaluating LLMs is also broadening [9, 25]. Traditional evaluation
metrics have largely been confined to aspects such as model knowl-
edge and capability (e.g. knowledge completion, reasoning, etc.),
alignment and safety, or task-specific performance [20]. With the
increasing relevance of data unlearning in LLMs, we propose, for
the first time, that the ease and robustness of applying unlearning
methods should be considered in future evaluation frameworks.
Accordingly, we explore whether the choice of pre-trained model
can influence the outcomes in three distinct unlearning scenarios.
In this study, we conduct benchmarks using both Llama2-7B and
Mistral-7B models and advocate for future research to explore a
broader array of models and unlearning techniques.

5 Evaluation Metrics and Methods
In this section, we detail the evaluation metrics used to benchmark
structural unlearning (Section 5.1), describe the model fine-tuning
methods (Section 5.2), and outline the unlearning algorithms im-
plemented for this benchmarking study (Section 5.3).

We draw upon well-established baselines from prior studies
[39, 40] to serve as benchmarks. We let D be the whole sample
dataset, D𝑓 denote the forget set, and D𝑟 denote the retained

set. We also follow [40] and combined its real authors dataset and
world facts dataset to be the factual dataset, denoted as D𝑓 𝑎𝑐𝑡 . The
overarching objective of the unlearning algorithms is to ensure
the model forgets D𝑓 , while preserving performance on D𝑟 and
D𝑓 𝑎𝑐𝑡 . Evaluation of unlearning algorithms follows a two-stage
process, and we evaluate all baseline methods using the current
widely adopted language models Llama2-7B [60], and Mistral-7B
[29].

As the dataset is completely synthetic, we first implement pa-
rameter efficient fine-tuning method, LoRA [24], on the pre-trained
model onD. The fine-tunedmodels are tested to have accurately ‘re-
membered’ the answers about each individual contract and reaches
ROUGE score of 1 for both Llama2-7B and Mistral-7B models. Suc-
cessful fine-tuning sets the stage for the unlearning process. Details
of the fine-tuning is explained below in Section 5.2. Then, we exper-
iment with several unlearning methods, summarised in the survey
paper [39, 40], on D𝑓 . Given the nascence of the field, existing un-
learning methods often lack robustness. We selected four of those
methods – Gradient Ascent (GA), Gradient Difference (GD), KL-
divergence and DPO – that represent the current mainstream for
the purpose of benchmarking. They serve well to demonstrate the
sensitivity of dataset topology, as described in Section 2, and to
inspire further research in the field. Details unlearning methods
are included below in Section 5.3.

5.1 Evaluation Metrics
The evaluation of unlearning presents significant challenges. [59]
demonstrates that, in certain scenarios, it is impossible to audit un-
learning processes using the single metric of model losses even with
access to the entire training trajectory. Although this underscores
the inherent difficulties of unlearning evaluations, the analysis
in [59] does not preclude using other heuristic-based methods to
assess unlearning.

We address the complexities involved in evaluating unlearning
by employing a diversified set of metrics, including the ROUGE
Score (commonly used for QA tasks) as well as Mean Reciprocal
Rank (MRR) and Top Hit Ratio (commonly used by researchers in
information retrieval and knowledge graph completion). Given our
focus on benchmarking structural LLMs unlearning, we incorporate
metrics from both of these communities to provide a comprehensive
evaluation.

ROUGE score: We use ROUGE scores to compare model answers
(with greedy sampling) with the ground truth. Specifically, we
compute the ROUGE-1 recall score [34], which acts as a surrogate
for accuracy on the question-answering task, as it accounts for the
output phrasing to be slightly different than the ground truth.

Mean reciprocal rank (MRR). An answer is usually composed of
multiple tokens. Therefore, we use the reciprocal average of the
rank of each target (ground truth) token to measure the model’s
memorization of names. Given a prefix 𝑄 , an output answer token
sequence 𝐸 = 𝑒1, ..., 𝑒𝑛 , with the length of |𝐸 |, the model predicts
the rank of the target token as 𝑟𝑎𝑛𝑘 (𝑒𝑖 |𝑄), and then MRR for the
name 𝐸 is calculated as follows:

𝑀𝑅𝑅 =

∑ |𝐸 |
𝑖=1 1/𝑟𝑎𝑛𝑘 (𝑒𝑖 , 𝑄)

|𝐸 | (1)
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Top hit ratio. The hit rate is a binary score for each output token,
indicating the presence of the correct token at the top 𝑚 values
in the output logits, denotes as ℎ𝑖𝑡 (𝑒𝑖 ,𝑚). Also, given the output
sequence 𝐸 = 𝑒1, ..., 𝑒𝑛 , and we choose𝑚 = 100 in our experiments.
The top hit ratio can be defined as below:

𝐻𝑖𝑡 =

∑ |𝐸 |
𝑖=1 ℎ𝑖𝑡 (𝑒𝑖 ,𝑚)

|𝐸 | (2)

The need for diversified evaluation metrics is also demonstrated
by their distinctive behaviors. In some cases, the ROUGE1 Score can
be high while the MRR and Top Hit Ratio remain low. For example,
when unlearning the𝐴𝐵 edge using the KLmethod based on Llama2-
7B pre-trained model, the ROUGE1 Score is 0.960 ± 0.004 while
the MRR and the Top Hit Ratio are relatively low at 0.205 ± 0.009
and 0.569 ± 0.008, respectively. This is because the post-unlearning
model generates lengthier token sequence 𝐸 = 𝑒1, ..., 𝑒𝑛 , leading
to lower scores. As such, deploying multiple evaluation metrics
offers a more comprehensive view of an unlearning algorithm’s
effectiveness. Therefore, the use of multiple diverse metrics allows
us to alleviate the unlearning evaluation trap that certain data
points of an equivalent class would produce the same metric change
without effective target removal [59]. Prior unlearning benchmark
use ROUGE [40]. Given our focus on structural LLMs unlearning,
we also incorporate metrics like MRR and hit ratios as they are
representativemetrics for structured learning communities. ROUGE
score [34–36] is commonly used for text-generation tasks e.g. QA,
while MRR and hit ratios are popular for entity retrieval-type tasks
e.g. knowledge graph completion [12, 32, 61].

5.2 Model Fine-tuning
Datasets constructed under PISTOL are synthetic with structured
Q&As derived from randomly generated contractual attributes.
As such, pre-trained model must first be fine-tuned on the con-
structed dataset to ensure the model effectively ’remembers’ the
new data points. We first implement the parameter efficient fine-
tuning method, LoRA [24], on the pre-trained model on D. The
fine-tuned models are tested to have accurately ‘remembered’ the
answers about each individual contract and reaches ROUGE score
of 1 for both Llama2-7B and Mistral-7B models. Successful fine-
tuning sets the stage for the unlearning process. As discussed in
Section 3, fine-tuning on datasets constructed under PISTOL, by its
design, facilitates more accurate evaluation on D𝑓 𝑎𝑐𝑡 later on due
to elimination of confounding variables.

Fine-tuning configurations. LoRA saves computation memory
by optimizing over two low rank metrics 𝐵,𝐴, where 𝐵𝐴 = △𝑤 ,
instead of the entire parameters space. In all of our experiments,
we optimize this loss with AdamW for 20 epochs and warm up
for the first epoch. We use an effective batch size of 16. Post fine-
tuning, the LLM can accurately answer the question about each
individual contract and reaches ROUGE score of 1 for both Llama2-
7B and Mistral-7B models. All finetuning experiments are run using
1 NVIDIA A40 GPU, and the running times depend on the model
and the size of dataset up to 2 hours.

5.3 Unlearning Algorithms
We experiment with several unlearning methods summarised in
the survey paper [39, 40], each of which is introduced in detail
in the section. Given that unlearning is a very new topic in the
area, the unlearning methods are not state-of-the-art and robust
in all different structural unlearning scenarios, which makes our
benchmarking and work more important to drive the research
further.

Gradient Ascent (GA). GA is the most straightforward and in-
tuitive method, performing gradient ascent on the forget data to
maximize the likelihood of mispredictions for those samples within
the forget set D𝑓 [28, 68], according to the loss function:

L𝜙 (D𝑓 ) =
1

|D𝑓 |
∑︁

𝑥∈D𝑓

𝑙𝜙 (𝑥) (3)

It is worth noting that GA alone can be sensitive to the choice of
hyperparameters during optimization, such as the number of ascent
steps and the learning rate. Therefore, during the unlearning stage,
the loss we aim to maximize is the average over the forget set D𝑓 .

Gradient Difference (GD). Gradient Difference [37] extends the
idea of GA by optimizing two losses: one maximizes mispredictions
on the forget set and the other minimizes mispredictions on the
retained set, thus simultaneously unlearning the forget set and
maintaining performance on the retained set. The combined loss
function is:

L𝜙 = −L𝜙 (D𝑓 ) + L𝜙 (D𝑟 ) (4)

Given the fact that the size of the forget set is normally smaller than
the retained set (otherwise, it will be more computationally efficient
to simply retrain on the retained set), the mini-batch selection
follows the selection from the forget set first, and then for each
selected forget samples, we randomly select a retained sample to
form a combined sample for the loss computation.

Unlearning with KL-divergence. The KL method aims to mini-
mize the KL-divergence between the predictions of the original
fine-tuned model and the unlearned model on the retained set D𝑟 ,
thereby maximizing the utility of the model on the retained data,
while concurrently maximizing the loss on the forget set [40]. The
loss function can be expressed as below:

L𝜙 = −L𝜙 (D𝑓 ) +
1

|D𝑟 |∑︁
𝑥∈D𝑟

1
|𝑥 |

|𝑥 |∑︁
𝑖=2

𝐾𝐿(𝑀𝑝𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑒𝑑 (𝑥<𝑖 | |𝑀𝑢𝑛𝑙𝑒𝑎𝑟𝑛 (𝑥<𝑖 ))
(5)

DPO. DPO aims to align the model such that it refrains from
revealing information from the forget set. The approach, inspired by
the original DPO method [53] and following the TOFU framework
[40], computes the loss using 𝑥𝑖𝑑𝑘 = [𝑞, 𝑎𝑖𝑑𝑘 ], which are question-
answer pairs from the forget set D𝑓 but with the answer replaced
by various expressions of ’I don’t know’. Unlike the other three
algorithms, DPO does not utilize gradient ascent. The loss function
can be expressed as below:

L𝜙 = L𝜙 (D𝑟 ) + L𝜙 (D𝑓 ,𝑖𝑑𝑘 ) (6)
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Unlearning configurations. For all unlearning methods, we con-
duct optimization of the corresponding loss over 20 epochs. In
scenarios where support from the retained set is utilized, an epoch
is defined as one complete cycle through the entire forget set, using
no more than the same number of samples from the retained set.
We employ the AdamW optimizer with a warm-up phase during
the first epoch and maintain an effective batch size of 4 for all un-
learning algorithms. Regarding the learning rate, we experiment
with various settings to identify the optimal rate for each setup
and will report these findings individually. We evaluate all baseline
methods using the most widely adopted available language models,
specifically Llama2-7B [60], and Mistral-7B [29]. All unlearning
experiments are run using 1 NVIDIA A40 GPU, and the running
time depends on the size and the algorithms.

6 Results
In this section, we demonstrate the benchmark results for each
structural unlearning task for each unlearning method described
above. We examined learning rates between 5 × 10−6 and 5 × 10−5
during the unlearning process and found that the performances of
all unlearning methods are sensitive to the selection of learning rate,
albeit to varying degrees. Hence, careful learning rate tuning for
each unlearning task is necessary to strike the best balance between
unlearning performance and the retained model utility. Since our
aim is to demonstrate the impact of dataset topology rather than
the unlearning methods per se, we presented results with learning
rates that generally provide a good balance between unlearning
effectiveness and retainedmodel utility. Figure 5 shows the ROUGE1
Score of all unlearning methods under three different unlearning
scenarios with both the Llama2-7B and the Mistral-7B model. Table
1 shows the unlearning results with different interconnectivity on
Sample Dataset 1. Each experiment is repeated three times, and both
average and standard deviation are reported in the exact experiment
results. Additional results are included in the Appendix B.

Q1: How will data inter-connectivity impact the unlearn-
ing performance?

Answer:As shown by plot(a) and (b) in Figure 5 (and Table 1 and
2), the ROUGE1 Score for the forget set when unlearning the more
inter-connected edge AB is higher than when unlearning the less
inter-connected edge AC across all unlearning methods. The results
indicate that the greater the degree of inter-connectivity a data
point possesses, the more challenging it becomes to unlearn
the data. The difference is particularly pronounced when unlearn-
ing with the GA and GD methods, where the ROUGE1 Score for the
forget set when unlearning the AB edge is 1.9x and 1.8x higher than
unlearning the AC edge respectively. Despite a smaller impact from
data inter-connectivity, unlearning is observed to be less effective
using the KL method. This phenomenon is likely attributable to the
design of KL, which, through reducing distribution shifts before
and after the forgetting process, not only encompasses relational
information between data points thereby making it more difficult to
forget less inter-connected information (such as the 𝐴𝐶 edge), but
also makes the forgetting of other data points harder. DPO method
demonstrates improved resilience to data inter-connectivity despite
being highly sensitive to learning rate changes. One reason for the
observed resilience could be that while the other three methods

involve gradient ascent on the forget samples, DPO continues to
perform gradient descent, albeit following the gradient of the forget
set paired with ’I don’t know’ responses. This suggests that gradient
ascent may be less robust for structural unlearning. For all methods,
enhancing the forgetting of more inter-connected data points can
be achieved by increasing the learning rate. However, this process
necessitates meticulous, case-by-case tuning to prevent significant
degradation in the retained model’s performance, thereby limiting
its scalability.

As explained in 4, Sample Dataset 1 has a condensed and sym-
metric structure which is handy in implementing multi-faceted
unlearning but does not yield topological variations when sam-
pling varying unlearning edges. We extend beyond the local view
of data inter-connectivity by randomly sampling an edge to forget
for each sub-graph in Sample Dataset 2 and measuring the averaged
result. As shown in Figure 6, the average ROUGE1 Score for the
forget set of the two models, using the GA method, increases from
0.349 to 0.490 as the average data inter-connectivity (i.e. knowl-
edge density) increases from the sparse sub-graph to the dense
sub-graph. Similar upward trends have been observed with the
GD and the KL methods. The results not only verified the local
view of data inter-connectivity revealed using Sample Dataset 1,
but also indicate that the greater density a knowledge graph
has, the more challenging it becomes to unlearn the data
within the graph. Similar to the evaluation results with Sample
Dataset 1, DPO method appear more robust to knowledge graphs
with varying knowledge density, evidenced by relatively stable
ROUGE1 Score across sub-graphs in Sample Dataset 2 where the
difference is within the statistical margin of error.

Q2: How will the size of the forget set affect overall un-
learning performance?

Answer: As we can see in plot (c) and (d) in Figure 5, at the con-
stant learning rate, the ROUGE1 Scores for the forget set demon-
strate significant drop for all unlearning methods. This reveals
that the ‘batched unlearning’ size can significantly affect the
unlearning outcomes across all unlearning methods. Addi-
tionally, while an increase in the forget set size effectively erases
the targeted data, it may also adversely impacts the fine-tuning
process for the retained dataset, demonstrated by the collapse of
the ROUGE1 Scores for the retained set for a number of unlearning
scenarios in the figure. More critically, it can disastrously render the
pre-trained model non-functional or significantly impaired. This
detrimental effect is especially pronounced in the given example,
where forgetting three edges constitutes a material 15% reduction
of the total dataset. To maintain a desirable balance between the for-
getting performance and retained model’s utility, one can manually
test and adjust the learning rate downward for unlearning requests
involving larger batch sizes. However, this approach clearly lacks
scalability. Future methods will need to enhance flexibility to ac-
commodate varying sizes of forgetting datasets effectively.

Q3: When the forgetting data skewed towards a specific
type, will it result in a more pronounced deterioration in
the retained model’s performance on that same data type as
compared to other data types?

Answer: As shown by plot (e) and (f) in Figure 5, ROUGE1
Scores for the independent retained set of sales contracts are lower
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Figure 5: Comparison of ROUGE1 Score on various unlearning scenarios with both Llama2-7B and Mistral-7B model. Plots show the ROUGE1
Score on both forget set (↓ the lower the better) and retained set (↑ the higher the better). (a,b) demonstrates the difference between removing a
highly inter-connected branch (the 𝐴𝐵 edge) and a lesser connected leaf (the 𝐴𝐶 edge). (c,d) shows the comparison between removing a single
sample (𝐴𝐶 edge) and multiple samples (𝐴𝐶 ,𝐴𝐶2,𝐴𝐶3). (e,f) shows the comparison between removing a sales contract (𝐴𝐶) and an employment
contract (𝐴𝑛) for the independent retained set of each data type. The red line indicates the average of each setup of the two models.

Table 1: Unlearning results with Different Interconnectivity on Sample Dataset 1.

Llama2-7B Rouge Score MRR Top Hit Ratio

Forget Forget Forget Retained Factual Forget Retained Factual Forget Retained Factual
Edge Method Set Set Set Set Set Set Set Set Set

AB

GA 0.521 ± 0.050 0.845 ± 0.043 0.871 ± 0.008 0.288 ± 0.004 0.310 ± 0.004 0.224 ± 0.009 0.766 ± 0.024 0.759 ± 0.004 0.580 ± 0.005
GD 0.654 ± 0.029 0.944 ± 0.003 0.866 ± 0.003 0.277 ± 0.008 0.292 ± 0.002 0.233 ± 0.011 0.731 ± 0.021 0.733 ± 0.006 0.577 ± 0.010
KL 0.700 ± 0.050 0.936 ± 0.036 0.960 ± 0.004 0.355 ± 0.014 0.370 ± 0.017 0.205 ± 0.009 0.839 ± 0.016 0.831 ± 0.010 0.569 ± 0.008
DPO 0.300 ± 0.000 0.902 ± 0.023 0.891 ± 0.006 0.261 ± 0.011 0.295 ± 0.002 0.221 ± 0.001 0.600 ± 0.003 0.690 ± 0.009 0.589 ± 0.002

AC

GA 0.267 ± 0.029 0.805 ± 0.005 0.846 ± 0.010 0.179 ± 0.001 0.271 ± 0.004 0.251 ± 0.011 0.606 ± 0.004 0.735 ± 0.006 0.579 ± 0.008
GD 0.283 ± 0.029 0.920 ± 0.005 0.850 ± 0.004 0.168 ± 0.002 0.261 ± 0.002 0.250 ± 0.005 0.590 ± 0.009 0.728 ± 0.008 0.581 ± 0.003
KL 0.505 ± 0.256 0.793 ± 0.165 0.955 ± 0.005 0.357 ± 0.031 0.407 ± 0.044 0.206 ± 0.002 0.694 ± 0.073 0.784 ± 0.047 0.568 ± 0.002
DPO 0.242 ± 0.000 0.933 ± 0.008 0.881 ± 0.001 0.159 ± 0.001 0.277 ± 0.001 0.221 ± 0.001 0.425 ± 0.003 0.658 ± 0.009 0.576 ± 0.001

Mistral-7B

AB

GA 0.325 ± 0.029 0.851 ± 0.010 0.917 ± 0.005 0.166 ± 0.014 0.269 ± 0.004 0.566 ± 0.004 0.500 ± 0.013 0.678 ± 0.007 0.790 ± 0.002
GD 0.347 ± 0.075 0.906 ± 0.021 0.918 ± 0.002 0.163 ± 0.002 0.285 ± 0.004 0.551 ± 0.005 0.524 ± 0.044 0.713 ± 0.013 0.781 ± 0.002
KL 0.667 ± 0.052 0.969 ± 0.014 0.961 ± 0.003 0.293 ± 0.028 0.316 ± 0.008 0.726 ± 0.005 0.737 ± 0.009 0.784 ± 0.004 0.892 ± 0.003
DPO 0.150 ± 0.050 0.878 ± 0.019 0.945 ± 0.005 0.081 ± 0.019 0.271 ± 0.004 0.624 ± 0.013 0.187 ± 0.043 0.631 ± 0.019 0.834 ± 0.004

AC

GA 0.184 ± 0.058 0.890 ± 0.010 0.916 ± 0.004 0.134 ± 0.054 0.236 ± 0.004 0.513 ± 0.006 0.252 ± 0.079 0.597 ± 0.025 0.755 ± 0.008
GD 0.261 ± 0.077 0.959 ± 0.010 0.929 ± 0.004 0.149 ± 0.006 0.266 ± 0.005 0.505 ± 0.004 0.293 ± 0.047 0.635 ± 0.016 0.748 ± 0.003
KL 0.739 ± 0.010 0.968 ± 0.008 0.966 ± 0.003 0.246 ± 0.002 0.279 ± 0.008 0.700 ± 0.012 0.727 ± 0.019 0.757 ± 0.008 0.877 ± 0.004
DPO 0.000 ± 0.000 0.949 ± 0.004 0.949 ± 0.003 0.018 ± 0.001 0.269 ± 0.004 0.598 ± 0.001 0.125 ± 0.000 0.676 ± 0.001 0.820 ± 0.001

than those of employment contracts when the unlearning edge,
𝐴𝐶 , is a sales contract. The opposite behavior is observed when
the unlearning edge is switched to 𝐴𝑛, an employment contract
– with which ROUGE1 Scores for the independent retained set of
employment contracts are lower than those of sales contracts. The
results indicate that unlearning a specific type of data may
result in the model’s performance deteriorating more on
the same type of data than on different types of data. Figure
5 also shows that the difference in unlearning outcomes is more
pronounced when employing the GA method compared to other

methods, indicating a greater lack of robustness in the GA method
when handling this kind of unlearning task.

Q4: Will the choice of pre-trained model affect the un-
learning performance?

Answer:When evaluating the impact of new unlearning tasks
on pre-trained models of comparable size, such as Llama2-7B and
Mistral-7B, we found that the outcomes of unlearning can vary
depending on the specific pre-trained model chosen.

We compare the unlearning outcome across all scenarios for two
pre-trained models – Llama2-7B (blue bars) and Mistral-7B (orange
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Figure 6: Forget Set Performance of Varying Knowledge Density (avg
of the two models).

bars) – in Figure 5. As illustrated by plot(a) – (d) in Figure 5, topo-
logical features such as data inter-connectivity and the size of the
forget set generally have a similar impact on both the Mistral-7B
and Llama-7B models. However, with roughly the same ROUGE1
Score for the retained set, Mistral-7B model generally demonstrates
higher unlearning effectiveness with the GA, GD and DPOmethods,
evidenced by lower ROUGE1 Scores for the forget set. However,
reduced unlearning effectiveness using the KL method with the
Mistral-7B model has been observed. This is likely attributable to
the Mistral-7B model’s stronger inherent resistance to distribution
shifts before and after the unlearning process, a characteristic de-
signed into the KL method. Additionally, due to the Mistral-7B
model’s stronger resistance to distribution shifts, the impact of data
inter-connectivity when using the KL methods is not significant
(the disparity shown in Figure 5 falls within the statistical margin
of error). Furthermore, while the unlearning outcomes for data
skewed towards a specific type show similar behavioral tendencies
in both the Mistral-7B and Llama2-7B models, the differences are
less pronounced in the Mistral-7B model. This is likely due to the
higher unlearning effectiveness of the Mistral-7B model, where
achieving comparable unlearning outcomes appears to degrade the
performance on the retained set to a lesser extent. Consequently,
this reduces the impact of data type on the performance of the
retained dataset in the Mistral-7B model.

Our findings indicate that the choice of pre-trained model will
affect unlearning performance, with the degree of impact varying
based on several factors, including the unlearning method, learning
rate, and dataset used, among others. Consequently, we advocate
for the inclusion of unlearning performance evaluation, particularly
their robustness in relation to real-world data topology, within the
broader assessment frameworks for pre-trained LLMs.

7 Discussion and Roadmap
LLMs unlearning is an evolving area that requires significant en-
hancements across various facets. Our new dataset compilation
pipeline, sample datasets, and benchmark results highlight several
challenges and future research directions in this domain.

In summary, PISTOL offers an easy-to-use and versatile pipeline
for synthesizing knowledge-graph based datasets that uniquely
captures the structural relationships among entities for the evalua-
tion of structural LLM unlearning. Our sample datasets, compiled

using PISTOL, not only show that current unlearning methods
are highly sensitive to hyperparameters, leading to unstable
outcomes, but also demonstrate a lack robustness when applied
to structured data. Our findings reveal that current unlearning
methods struggle to handle scenarios characterized by (1) varying
levels of inter-connectivity among data points, (2) larger sizes of
data sets to be forgotten, and (3) unlearning tasks targeting a spe-
cific type of data. The challenges encountered in our experiments
underscore the critical need for future research aimed at developing
more effective and robust machine unlearning methods for LLMs.

With respect to future research direction, limited existing re-
search on using model editing for unlearning, as discussed in Sec-
tion 2, suggests that this could be a promising approach. However,
this approach also necessitates a more precise and widely accepted
definition of what constitutes sufficient data deletion, as opposed
to mere data editing. Additionally, integrating unlearning with
retrieval augmented generation (RAG) techniques could enhance
model updates, particularly in fields where accuracy and timeliness
are crucial, such as news, medicine, or law. Furthermore, in contrast
to the traditional LLM training paradigm,

Moreover, in contrast to the traditional LLM training paradigm
and inspired by federate learning techniques [6, 33, 52, 73], fed-
erated LLM pre-training and fine-tuning [26, 55, 72] are gaining
increasing attention as this approach not only personalizes the
model but also leverages private data to enhance the capabilities
of pre-trained LLMs. Importantly, within FL scenarios, the concept
of unlearning becomes crucial as each participating client retains
the right to forget, necessitating the development of federated un-
learning methods [22, 38]. These methods must address the unique
challenge of removing a client’s influence on the trained model—an
aspect of critical importance in federated environments. Presently,
federated unlearning techniques primarily address standard classi-
fication tasks without considering structural relationships between
client datasets. Extending these unlearning methods to efficiently,
effectively, and robustly handle structured datasets in decentralized
training environments remains a vital area for future research.

Furthermore, Differential Privacy (DP) was initially designed
to protect individual data privacy and has since been adapted to
safeguard privacy at the client level [13, 51, 65, 69]. Training mod-
els under DP often involve a trade-off between the privacy budget
and model utility . Interestingly, DP also imparts a degree of gen-
eralizability to the model by diluting the influence of individual
data points or clients. Exploring how DP can be integrated with
unlearning methods to enhance the model’s forgetting capabilities
without compromising utility presents an intriguing research op-
portunity. This integration could potentially lead to more robust FL
frameworks that uphold both privacy and performance, aligning
with the evolving needs of secure and responsible AI development.

Lastly, our results also reveal that the choice of pre-trained model
does influence unlearning performance. We therefore recommend,
for the first time, the incorporation of unlearning performance
evaluation, especially its robustness in relation to real-world data
topology, into the broader assessment frameworks for pre-trained
LLMs.
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Appendix
A Sample Dataset

Sample of Sales of Goods Contract

SALES OF GOODS CONTRACT
1. PARTIES
• This Sales Contract (hereinafter referred to as the “Contract”) is entered into on [•] (the “Effective Date”) by and between [•]
with an address of [•] (the “Seller”) and [•] with an address of [•] (the “Customer”) (collectively referred to as the “Parties”).

2. GOODS AND PRICE
• The goods that the Seller is selling to the Customer are enlisted below with their quantities (hereinafter referred to as the “Goods”).
• Goods: [•]
• Quantity: [•]
• Price per unit: [•]
• Total price: [•]

3. PAYMENTS
• The Seller shall provide the Customer with an invoice no later than [•] days after the time of the delivery.
• All invoices are to be paid in full within [•] days. Any balances not paid within [•] days will be subject to a [•]% late payment
penalty.

4. DELIVERY AND SHIPPING
• The delivery of the goods (the “Delivery”) will be at the location [•].
• The shipping method will be decided by the [•]. [•] will be responsible for the costs of the shipment.

5. WARRANTIES
• General Warranty: The Seller hereby warrants to the Customer that the Goods shall be free from defects in materials and
workmanship under normal use and service for a period of [•] years from the date of delivery (the "Warranty Period"). The
Seller affirms that it has good title to the Goods free and clear of any liens and encumbrances and has the right to sell the Goods
to the Customer.

• Remedy for Breach of Warranty: In the event of a breach of this warranty, the Customer must notify the Seller in writing
within of [•] days of discovering the defect. Upon receiving such notification, the Seller shall, at its sole option, (i) repair or
replace the defective Goods at no additional charge to the Customer, or (ii) refund the purchase price paid for the defective Goods,
provided that the Goods are returned to the Seller, if so requested. The choice of remedy shall be at the Customer’s discretion if
repair or replacement does not remedy the defect within a reasonable time.

• Exclusions from Warranty: This warranty does not apply to any damage or defect resulting from misuse, abuse, neglect,
alterations, unauthorized repairs, modifications, accidents, or natural wear and tear. The Seller’s obligation under this warranty is
limited to the repair, replacement, or refund as provided under this section and does not cover any other costs such as the cost of
removal and reinstallation of Goods, loss of use, loss of profit, or other incidental or consequential damages.

• No Other Warranties: Except for the warranty set forth herein, the Seller disclaims all other warranties, express or implied,
including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. The Seller’s liability
under this warranty shall be limited to the repair, replacement, or refund as specified herein, and in no event shall exceed the
purchase price of the defective Goods.
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• Survival: This warranty shall survive the delivery, inspection, acceptance, and payment of and for the Goods and shall inure to
the benefit of the Customer and its successors and assigns.

6. INSPECTION
• Hereby, the Customer acknowledges that it has relied solely on the investigations, examinations, and inspections that the
Customer has chosen to make and that the Seller has afforded the Customer the opportunity for full and complete investigations,
examinations, and inspections.

7. RISK OF LOSS AND TITLE
• The risk of loss or damage for the goods will be on the Seller until the goods pass upon delivery to the Customer or its designee.
The Title of the goods will also remain with the Seller until the goods pass upon delivery to the Customer or its designee.

8. DELAY OR FAILURE TO PERFORM AND FORCE MAJEURE
• Under no circumstances will the Seller be held liable to the Customer for any delay that may occur, non-delivery or an arising fault
of this Agreement that may be due to any labour dispute, shortage in transportation, delay or shortage of materials to produce the
Goods, fires, accidents, Acts of God, or any other causes outside Seller’s control. The Seller will notify the Customer immediately
upon realization that it will not be able to deliver the Goods as promised. Upon such notice, either Party may terminate this
Agreement.

9. COOLING-OFF PERIOD
• Either Party may terminate this Agreement, for any reason, within [•] days following the Effective Date of this Agreement
(’Cooling-Off Period’). Termination during this Cooling-Off Period must be communicated in writing to the other Party.
Following the expiration of the Cooling-Off Period, no Party shall have the right to terminate this Agreement on the basis of the
Cooling-Off Period provisions.

10. LIMITATION OF LIABILITY
• Under no circumstances will the Seller be liable for any indirect, special, consequential, or punitive damages (including lost profits)
arising out of or relating to this Agreement or the transactions it contemplates (whether for breach of contract, tort, negligence, or
other form of action).

11. SEVERABILITY
• In the event that any provision of this Agreement is found to be void and unenforceable by a court of competent jurisdiction, then
the remaining provisions will remain in force in accordance with the Parties’ intention.

12. ENTIRE AGREEMENT
• This Agreement contains the entire agreement and understanding among the Parties hereto with respect to the subject matter
hereof, and supersedes all prior agreements, understandings, inducements and conditions, express or implied, oral or written, of
any nature whatsoever with respect to the subject matter hereof. The express terms hereof control and supersede any course of
performance and/or usage of the trade inconsistent with any of the terms hereof.

13. GOVERNING LAW
• This Agreement shall be governed by and construed in accordance with the laws of [•].

The Parties hereby agree to the terms and conditions set forth in this Agreement and such is demonstrated throughout
their signatures below.
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Sample QAs of the Sales of Goods Contract

• Q1: What was the effective date of the contract between [seller name] and [customer name]?
• Q2: What was the name of the seller in the contract with [customer name] as of [effective date]?
• Q3: What was the address of [seller name] in the contract with [customer name]?
• Q4: What was the name of the customer in the contract with [seller name] as of [effective date]?
• Q5: What was the address of [customer name] in the contract with [seller name]?
• Q6: What was the good that the seller was selling to the customer based on the contract between [seller name] and [customer
name]?

• Q7:What was the quantity of the good being sold based on the contract between [seller name] and [customer name]?
• Q8: What was the unit price in dollars of the good being sold based on the contract between [seller name] and [customer name]?
• Q9: What was the total price in dollars of the good being sold based on the contract between [seller name] and [customer name]?
• Q10: By how many days after the delivery time must the seller provide the customer with an invoice based on the contract
between [seller name] and [customer name]?

• Q11: Within how many days must the invoice be paid in full based on the contract between [seller name] and [customer name]?
• Q12: After how many days would unpaid balances incur a late payment penalty based on the contract between [seller name] and
[customer name]?

• Q13: What was the late payment interest rate based on the contract between [seller name] and [customer name]?
• Q14: What was the address of delivery based on the contract between [seller name] and [customer name]?
• Q15: Who would decide the shipping method based on the contract between [seller name] and [customer name]?
• Q16: Who would be responsible for the costs of the shipment based on the contract between [seller name] and [customer name]?
• Q17: What was the duration of the general warranty period in years based on the contract between [seller name] and [customer
name]?

• Q18: Within how many days of discovering a defect must the customer notify the seller in writing in the event of a breach of
warranty based on the contract between [seller name] and [customer name]?

• Q19: What was the duration of the cooling-off period in days based on the contract between [seller name] and [customer name]?
• Q20: Which jurisdiction’s laws govern the contract between [seller name] and [customer name]?
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Sample of Employment Contract

EMPLOYMENT CONTRACT
1. PARTIES
• (the "Employer") with its principal place of business located at [•] ("Employer’s Business Address") agrees to employ [•] (the
"Employee") who lives at [•] ("Employee’s Residential Address") and the Employee agrees to be employed, on the terms and
conditions set out in this Contract, and in the accompanying Addendum (together, the "Agreement").

2. START AND LENGTH OF EMPLOYMENT
• The Employee will start employment on [•] ("Start Date").
• The Employer shall employ the Employee for [•] months ("Length of Employment"), however, the Employer and the Employee
may change the Length of Employment in accordance with Clause 12 of this Contract.

3. JOB TITLE AND DUTIES
• The Employee shall be employed as [•] ("Position"). The Employee shall perform the duties as described in the accompanying
Addendum, and any other duties reasonably assigned by the Employer.

4. PLACE OF WORK
• The Employee shall work at [•] ("Address of Work Location"). The Employee shall not be required to work at a different location
unless the Employee consents in writing to such an arrangement. Any such employment shall be on the same terms and conditions
as this Agreement.

5. WORKING HOURS
• The Employee’s normal days of work are Monday to Friday ("Normal Work Days") and the Employee’s normal hours of work
are [•] to [•] ("Normal Work Hours") (together, the "Work Week").

6. PAY
• The Employer shall pay the Employee $[•] ("Rate of Basic Pay") per hour.
• The Employer shall pay the Employee in [•] instalments.

7. BENEFITS
• The Employee shall be entitled to participate in [•] offered by the Employer, subject to the terms and conditions of those plans.

8. HOLIDAYS
• The Employer shall provide the Employee with [•] days of paid holiday leave ("Holiday Leave") per year, plus the public holidays.
• The Employee shall provide the Employer two weeks’ notice of any Holiday Leave, and the Employer may only refuse Holiday
Leave in exceptional circumstances. The Employer shall pay the Employee for any unused Holiday Leave at the earlier of: (i) the
end of each year, or (ii) the end of the Employee’s employment.

9. CONFIDENTIALITY
• The Employee agrees that during the term of employment and for the first [•] months thereafter, he/she will not disclose any
confidential information pertaining to the business of the Employer to any person not authorized by the Employer to receive such
information.



GenAI Evaluation, Workshop, KDD 2024 Qiu, Shen et al.

10. WORK CONDITIONS
• The Employer shall ensure the Employee is appropriately instructed and trained in relation to tasks that the Employee will carry
out. The Employer shall provide a safe and healthy work environment and shall not require the Employee to do work that subjects
the Employee to health or safety hazards.

11. SICK PAY AND ABSENCE
• The Employee shall notify the Employer if he or she is going to be absent from work because of sickness or injury. The Employer
shall not require the Employee to work when sick or injured.

• In each year of employment, the Employee shall be entitled to receive the Basic Rate of Pay (as if he/she had worked the Normal
Work Hours) per day for the first [•] days of absence from work due to sickness or injury ("Paid Sick Leave").

12. TERMINATION
• The Employee and Employer shall each provide the other with [•] weeks’ written notice of termination in a language the Employee
understands.

• The Employee and Employer may agree that the Employer pay the Employee for this notice period instead of requiring the
Employee to work. In exceptional circumstances, as defined in the Addendum, notice of termination is not required.

• On termination, the Employee shall return to the Employer all Employer property, and the Employer shall pay immediately all
monies due under this Agreement to the Employee.

13. NON-COMPETE
• During the term of employment and for [•] months after the termination of employment, the Employee agrees not to engage in
any business activities or employment with a competitor or in any capacity that directly competes with the Employer’s business
within the United States.

• This restriction applies to similar products, services, or industry sectors in which the Employer operates. The Employee acknowl-
edges that such competition could harm the Employer’s business interests and agrees to refrain from such activities to protect the
Employer’s legitimate business interests.

14. CHANGES TO EMPLOYMENT TERMS
• This Contract and the attached Addendum make up the entire Agreement relating to the Employee’s employment. The Employer
shall not make any changes to this Agreement without the Employee’s written consent. The Employer shall provide [•] weeks’
written notice of any proposed changes in a language the Employee understands, and the Employer shall permit the Employee to
ask questions about such changes.

15. ENTIRE AGREEMENT
• This Agreement and the attached Addendum contain the entire agreement between the parties. The Employee acknowledges that
he/she has not relied on any oral or written representations made by the Employer or its employees or agents.

16. GOVERNING LAW
• This Agreement and any dispute or claim arising out of or in connection with it or its subject matter or formation (including
non-contractual disputes or claims) shall be governed by and construed in accordance with the laws of [•] ("Governing Law").

I acknowledge that I have read this Contract and the Addendum to this Contract; I understand and accept the terms and
conditions set out within it, and that this Contract, together with the Addendum, form the Agreement of Employment.
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Sample QAs of the Employment Contract

• Q1: What was the name of the employer in the employment contract with [employee name], which started from [start date]?
• Q2: What was the principal business location of [employer name] based on the contract between [employer name] and [employee
name]?

• Q3: What was the name of the employee in the employment contract with [employer name], which started from [start date]?
• Q4: What was the address of [employee name] based on the contract between [employer name] and [employee name]?
• Q5: What was the start date based on the contract between [employer name] and [employee name]?
• Q6: For how many months will the employer employ the employee based on the contract between [employer name] and [employee
name]?

• Q7: What was the job position based on the contract between [employer name] and [employee name]?
• Q8: What was the work location based on the contract between [employer name] and [employee name]?
• Q9: At what hour did the workday start based on the contract between [employer name] and [employee name]?
• Q10: At what hour did the workday finish based on the contract between [employer name] and [employee name]?
• Q11: What was the hourly basic pay in dollars based on the contract between [employer name] and [employee name]?
• Q12: What was the frequency of salary payment based on the contract between [employer name] and [employee name]?
• Q13: What benefit was provided to the employee based on the contract between [employer name] and [employee name]?
• Q14: How many days of paid holiday leave were provided to the employee based on the contract between [employer name] and
[employee name]?

• Q15: For how many months after the employment ends was the employee prohibited from disclosing any confidential information
based on the contract between [employer name] and [employee name]?

• Q16: What was the number of days the employee was entitled to Paid Sick Leave in each year of employment based on the contract
between [employer name] and [employee name]?

• Q17: How many weeks’ written notice of termination must the employee and employer each provide to the other based on the
contract between [employer name] and [employee name]?

• Q18: For how many months did the non-compete clause cover based on the contract between [employer name] and [employee
name]?

• Q19: How many weeks’ written notice must the employer provide before any proposed changes to the terms of employment
based on the contract between [employer name] and [employee name]?

• Q20: Which jurisdiction’s laws govern the contract between [employer name] and [employee name]?

B Additional Experiment Results
In this section, we show in detail all the results of our benchmark. As explained in Section 6, unlearning performance is very sensitive to the
choice of learning rate. However, since our aim is to demonstrate the impact of dataset topology rather than the unlearning methods per se,
we presented results with learning rates that generally provide a good balance between unlearning effectiveness and retained model utility.
With Sample Dataset 1 and Llama2-7B model, we chose the learning rate of 2 × 10−5 for the GA, GD, and KL methods and 1.5 × 10−5 for
the DPO method. With Sample Dataset 1 and Mistral-7B model, we chose the learning rate of 1 × 10−5 for the GA, GD and DPO methods
and 2 × 10−5 for the KL method. With Sample Dataset 2, we chose the learning rate of 1 × 10−5 for the GA, GD and DPO methods and of
2 × 10−5 for the KL method for both models.

The full tables for Figure 5 can be found in Table 1, 3 and 4. The full table for Figure 6 can be found in Table 2.
All the experiments are repeated three times, and the average and standard deviation are reported in the tables.
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Table 2: Unlearning results with Different Knowledge Density on Sample Dataset 2

Llama2-7B Rouge Score MRR Top Hit Ratio

Knowledge Forget Forget Retained Forget Retained Forget Retained
Density Method Set Set Set Set Set Set

Sparse

GA 0.430 ± 0.104 0.994 ± 0.004 0.179 ± 0.039 0.278 ± 0.006 0.516 ± 0.056 0.610 ± 0.009
GD 0.538 ± 0.144 0.997 ± 0.003 0.202 ± 0.054 0.279 ± 0.003 0.522 ± 0.052 0.608 ± 0.009
KL 0.197 ± 0.085 0.478 ± 0.092 0.226 ± 0.045 0.366 ± 0.022 0.427 ± 0.137 0.564 ± 0.061
DPO 0.220 ± 0.091 0.980 ± 0.023 0.158 ± 0.040 0.280 ± 0.005 0.400 ± 0.035 0.599 ± 0.019

Semi-
Dense

GA 0.469 ± 0.055 0.999 ± 0.002 0.197 ± 0.039 0.277 ± 0.001 0.544 ± 0.058 0.609 ± 0.006
GD 0.598 ± 0.074 1.000 ± 0.000 0.240 ± 0.053 0.277 ± 0.001 0.584 ± 0.086 0.609 ± 0.005
KL 0.258 ± 0.086 0.405 ± 0.141 0.255 ± 0.073 0.333 ± 0.029 0.422 ± 0.114 0.518 ± 0.086
DPO 0.220 ± 0.055 0.996 ± 0.004 0.205 ± 0.042 0.279 ± 0.001 0.460 ± 0.086 0.608 ± 0.010

Dense

GA 0.576 ± 0.093 0.997 ± 0.003 0.215 ± 0.037 0.276 ± 0.001 0.573 ± 0.062 0.608 ± 0.008
GD 0.623 ± 0.115 0.999 ± 0.002 0.223 ± 0.032 0.277 ± 0.001 0.583 ± 0.049 0.610 ± 0.008
KL 0.302 ± 0.080 0.528 ± 0.110 0.268 ± 0.048 0.376 ± 0.005 0.521 ± 0.149 0.593 ± 0.063
DPO 0.230 ± 0.057 0.998 ± 0.004 0.219 ± 0.053 0.278 ± 0.002 0.470 ± 0.100 0.602 ± 0.006

Mistral-7B

Sparse

GA 0.268 ± 0.098 0.938 ± 0.027 0.223 ± 0.049 0.311 ± 0.006 0.517 ± 0.100 0.657 ± 0.051
GD 0.272 ± 0.102 0.957 ± 0.017 0.218 ± 0.048 0.313 ± 0.008 0.520 ± 0.110 0.662 ± 0.044
KL 0.694 ± 0.177 0.997 ± 0.004 0.290 ± 0.044 0.314 ± 0.009 0.665 ± 0.152 0.735 ± 0.045
DPO 0.030 ± 0.027 0.976 ± 0.010 0.028 ± 0.013 0.309 ± 0.002 0.142 ± 0.025 0.670 ± 0.017

Semi-
dense

GA 0.380 ± 0.087 0.977 ± 0.012 2.201 ± 0.040 0.313 ± 0.012 0.540 ± 0.094 0.669 ± 0.069
GD 0.377 ± 0.089 0.983 ± 0.007 0.206 ± 0.030 0.313 ± 0.013 0.550 ± 0.099 0.668 ± 0.080
KL 0.803 ± 0.110 0.999 ± 0.002 0.303 ± 0.041 0.320 ± 0.002 0.721 ± 0.045 0.751 ± 0.004
DPO 0.075 ± 0.056 0.991 ± 0.004 0.056 ± 0.027 0.306 ± 0.002 0.187 ± 0.068 0.671 ± 0.013

Dense

GA 0.403 ± 0.096 0.961 ± 0.035 0.264 ± 0.079 0.318 ± 0.015 0.566 ± 0.117 0.685 ± 0.031
GD 0.435 ± 0.079 0.968 ± 0.034 0.273 ± 0.074 0.320 ± 0.013 0.588 ± 0.142 0.683 ± 0.033
KL 0.935 ± 0.038 1.000 ± 0.000 0.318 ± 0.033 0.319 ± 0.003 0.764 ± 0.038 0.757 ± 0.006
DPO 0.050 ± 0.061 0.993 ± 0.006 0.039 ± 0.028 0.307 ± 0.005 0.158 ± 0.095 0.667 ± 0.017

Table 3: Unlearning results with different quantity

Llama2-7B Rouge Score MRR Top Hit Ratio

Forget Forget Forget Retained Factual Forget Retained Factual Forget Retained Factual
Edge Method Set Set Set Set Set Set Set Set Set

AC

GA 0.267 ± 0.029 0.805 ± 0.005 0.846 ± 0.010 0.179 ± 0.001 0.271 ± 0.004 0.251 ± 0.011 0.606 ± 0.004 0.735 ± 0.006 0.579 ± 0.008
GD 0.283 ± 0.029 0.920 ± 0.005 0.850 ± 0.004 0.168 ± 0.002 0.261 ± 0.002 0.250 ± 0.005 0.590 ± 0.009 0.728 ± 0.008 0.581 ± 0.003
KL 0.505 ± 0.256 0.793 ± 0.165 0.955 ± 0.005 0.357 ± 0.031 0.407 ± 0.044 0.206 ± 0.002 0.694 ± 0.073 0.784 ± 0.047 0.568 ± 0.002
DPO 0.242 ± 0.000 0.933 ± 0.008 0.881 ± 0.001 0.159 ± 0.001 0.277 ± 0.001 0.221 ± 0.001 0.425 ± 0.003 0.658 ± 0.009 0.576 ± 0.001

AC
AC2
AC3

GA 0.000 ± 0.000 0.000 ± 0.000 0.003 ± 0.006 0.026 ± 0.044 0.025 ± 0.044 0.004 ± 0.008 0.107 ± 0.185 0.108 ± 0.186 0.045 ± 0.075
GD 0.134 ± 0.037 0.760 ± 0.025 0.795 ± 0.024 0.129 ± 0.013 0.221 ± 0.005 0.319 ± 0.024 0.327 ± 0.022 0.455 ± 0.026 0.574 ± 0.006
KL 0.003 ± 0.005 0.014 ± 0.025 0.529 ± 0.359 0.105 ± 0.085 0.108 ± 0.087 0.067 ± 0.084 0.193 ± 0.046 0.189 ± 0.066 0.314 ± 0.161
DPO 0.075 ± 0.025 0.987 ± 0.003 0.891 ± 0.003 0.130 ± 0.030 0.295 ± 0.001 0.232 ± 0.003 0.431 ± 0.031 0.739 ± 0.005 0.577 ± 0.002

Mistral-7B

AC

GA 0.184 ± 0.058 0.890 ± 0.010 0.916 ± 0.004 0.134 ± 0.054 0.236 ± 0.004 0.513 ± 0.006 0.252 ± 0.079 0.597 ± 0.025 0.755 ± 0.008
GD 0.261 ± 0.077 0.959 ± 0.010 0.929 ± 0.004 0.149 ± 0.006 0.266 ± 0.005 0.505 ± 0.004 0.293 ± 0.047 0.635 ± 0.016 0.748 ± 0.003
KL 0.739 ± 0.010 0.968 ± 0.008 0.966 ± 0.003 0.246 ± 0.002 0.279 ± 0.008 0.700 ± 0.012 0.727 ± 0.019 0.757 ± 0.008 0.877 ± 0.004
DPO 0.000 ± 0.000 0.949 ± 0.004 0.949 ± 0.003 0.018 ± 0.001 0.269 ± 0.004 0.598 ± 0.001 0.125 ± 0.000 0.676 ± 0.001 0.820 ± 0.001

AC
AC2
AC3

GA 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
GD 0.000 ± 0.000 0.020 ± 0.009 0.069 ± 0.034 0.000 ± 0.000 0.035 ± 0.002 0.190 ± 0.027 0.000 ± 0.000 0.173 ± 0.010 0.445 ± 0.022
KL 0.000 ± 0.000 0.012 ± 0.010 0.000 ± 0.000 0.049 ± 0.048 0.080 ± 0.027 0.000 ± 0.000 0.173 ± 0.159 0.000 ± 0.000 0.305 ± 0.041
DPO 0.005 ± 0.002 0.003 ± 0.003 0.304 ± 0.009 0.009 ± 0.004 0.006 ± 0.001 0.163 ± 0.019 0.024 ± 0.002 0.034 ± 0.002 0.428 ± 0.020

Table 4: Unlearning results with different type

Llama2-7B Rouge Score MRR Top Hit Ratio

Independent Independent Independent Independent Independent Independent
Forget Forget Forget Retained Retained Forget Retained Retained Forget Retained Retained
Edge Method Set Sales Set (EF) Employ. set (Eq) Set Sales Set (EF) Employ. set (Eq) Set Sales Set (EF) Employ. set (Eq)

AC

GA 0.267 ± 0.029 0.772 ± 0.009 0.955 ± 0.010 0.179 ± 0.001 0.255 ± 0.002 0.331 ± 0.002 0.606 ± 0.004 0.694 ± 0.010 0.726 ± 0.008
GD 0.283 ± 0.029 0.911 ± 0.010 0.961 ± 0.000 0.168 ± 0.002 0.252 ± 0.008 0.330 ± 0.001 0.590 ± 0.009 0.702 ± 0.013 0.725 ± 0.003
KL 0.505 ± 0.256 0.772 ± 0.186 0.821 ± 0.119 0.357 ± 0.031 0.399 ± 0.043 0.417 ± 0.018 0.694 ± 0.073 0.773 ± 0.053 0.802 ± 0.033
DPO 0.242 ± 0.000 0.939 ± 0.010 0.983 ± 0.000 0.159 ± 0.001 0.280 ± 0.001 0.316 ± 0.000 0.425 ± 0.003 0.626 ± 0.009 0.652 ± 0.008

An

GA 0.263 ± 0.000 0.950 ± 0.029 0.744 ± 0.013 0.135 ± 0.003 0.279 ± 0.004 0.313 ± 0.006 0.478 ± 0.013 0.673 ± 0.007 0.655 ± 0.007
GD 0.296 ± 0.029 0.983 ± 0.017 0.886 ± 0.013 0.148 ± 0.012 0.282 ± 0.002 0.322 ± 0.005 0.491 ± 0.023 0.685 ± 0.005 0.683 ± 0.009
KL 0.241 ± 0.029 0.819 ± 0.003 0.844 ± 0.067 0.269 ± 0.023 0.366 ± 0.006 0.399 ± 0.002 0.665 ± 0.020 0.806 ± 0.007 0.829 ± 0.012
DPO 0.075 ± 0.025 0.989 ± 0.010 0.939 ± 0.010 0.130 ± 0.030 0.290 ± 0.001 0.329 ± 0.001 0.431 ± 0.031 0.708 ± 0.004 0.712 ± 0.008

Mistral-7B

AC

GA 0.184 ± 0.058 0.905 ± 0.010 0.983 ± 0.000 0.134 ± 0.054 0.277 ± 0.005 0.319 ± 0.005 0.252 ± 0.079 0.670 ± 0.025 0.710 ± 0.022
GD 0.261 ± 0.077 0.963 ± 0.003 1.000 ± 0.000 0.149 ± 0.006 0.293 ± 0.003 0.324 ± 0.003 0.293 ± 0.047 0.699 ± 0.006 0.731 ± 0.015
KL 0.739 ± 0.010 1.000 ± 0.000 1.000 ± 0.000 0.246 ± 0.002 0.342 ± 0.003 0.343 ± 0.002 0.727 ± 0.019 0.805 ± 0.002 0.798 ± 0.002
DPO 0.000 ± 0.000 0.967 ± 0.017 0.983 ± 0.000 0.018 ± 0.001 0.303 ± 0.003 0.329 ± 0.001 0.125 ± 0.000 0.732 ± 0.007 0.757 ± 0.001

An

GA 0.345 ± 0.110 0.904 ± 0.013 0.839 ± 0.029 0.063 ± 0.017 0.322 ± 0.005 0.325 ± 0.002 0.384 ± 0.032 0.757 ± 0.006 0.698 ± 0.010
GD 0.286 ± 0.035 0.933 ± 0.000 0.950 ± 0.010 0.199 ± 0.026 0.321 ± 0.002 0.324 ± 0.003 0.558 ± 0.005 0.808 ± 0.012 0.745 ± 0.014
KL 0.828 ± 0.009 1.000 ± 0.000 0.978 ± 0.009 0.238 ± 0.005 0.351 ± 0.002 0.346 ± 0.008 0.711 ± 0.006 0.815 ± 0.002 0.808 ± 0.003
DPO 0.010 ± 0.000 0.983 ± 0.000 0.978 ± 0.009 0.020 ± 0.001 0.310 ± 0.001 0.320 ± 0.001 0.122 ± 0.014 0.730 ± 0.005 0.740 ± 0.001
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