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ABSTRACT
Large language models (LLMs) have achieved remarkable progress
in recent years. These models have the capability to answer complex
questions about medical disorders, their pathophysiology, etiology
and corresponding interventions. However, when providing infor-
mation about medical products and treatments, it is important to
ensure that models respond reliably with factually correct informa-
tion that adheres to product labels, and do not produce factual errors
in which a claim contradicts established ground-truth knowledge.
To this end, in this paper we propose an evaluation method to deter-
mine whether claims in LLM responses to questions about medical
products are supported by FDA-approved product information.
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1 INTRODUCTION
Recent advancements in generative artificial intelligence have led
to the development of large language models (LLMs) capable of pro-
cessing and generating text with human-like performance. These
include open-source models such as Llama [80, 81], and commercial
models such as OpenAI’s ChatGPT [62] or Anthropic’s Claude [5, 7].
These generalist models have achieved impressive results on varied
benchmarks including question answering [10, 43, 49, 50, 63, 87]. In
healthcare, they have the demonstrated remarkable capabilities in
a number of complex expert tasks (e.g. providing differential diag-
noses [39], summarizing charts [85], medical image analysis [2, 38],
etc.) and shown potential to democratize medical knowledge and
facilitate access to healthcare [25]. To this end, progress towards
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specialized medical LLMs advances rapidly [23, 70, 82, 86]. Fueled
by their vast promise, both generalist and specialized LLMs are
starting to be adopted in the real-world clinical setting to stream-
line clinical and administrative tasks [19, 56, 64, 72, 100], and a
growing number of clinicians report using LLMs in their clinical
practice or education [17, 54, 78, 79].

While LLMs hold vast promise and their capabilities are evolv-
ing at a breathtaking speed, their rapid adoption also introduces
concerns about their trustworthiness [76]. Specifically, they can hal-
lucinate and produce factual errors in which a claim in the response
contradicts established ground-truth knowledge [3, 41, 76], despite
appearing plausible and confident. In the medical context, incorrect
information can pose significant risk to public health, and cause
harm to individuals and organizations [1, 4, 9, 37, 44, 57, 90]. This
issue is exacerbated by the potential for patients to use LLMs as a
source of medical information, as they may rely wholly on an them
for prognosis and treatment, thereby reducing or eliminating re-
liance on appropriate professional medical judgement and support
[90]. Since incorrect information may be indistinguishable from fac-
tually accurate responses, patients may be provided with incorrect
information. Hence, LLMs have the potential to result in patient
harm and lead to severe health consequences, if not adequately
deployed with robust guardrails and quality controls.

Given the real-life risks to public health of incorrect health-
related information, it is paramount that LLMs are evaluated thor-
oughly prior to deployment. Even if model developers issue warn-
ings of the potential limitations of LLMs, their misuse can still pose
risks [90]. Hence, the development of methods to evaluate the an-
swers of LLMs to medical questions is not just of academic interest
but of great practical importance.

While previous works have evaluated the quality of LLMs re-
sponses to biomedical and clinical knowledge questions [12, 16, 22,
64, 73], in this work we focus into an overlooked issue that impacts
most LLMs, that is, the potential to provide potentially harmful
information about medical products, specifically drugs. Tradition-
ally, specialized ML models have been trained to address a specific
task using highly domain and problem-specific training data [21].
However, LLM models are trained on much more broadly avail-
able generalist datasets [51] with less hands-on human oversight
in their development. Therefore, they can learn complex unvetted
relationships from the training data and produce outputs about
medical products that do not strictly adhere to the approved prod-
uct labels. Promoting a medical product for anything other than its
approved use, often denoted off-label promotion, can be unsafe if
not done with adequate professional supervision [83]. Therefore,
it is preferred that LLMs provide information that adhere to the
approved labeling documents [11, 45, 48, 53, 75, 83, 84].
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To avoid this issue, building upon previous work on factuality
evaluation of LLM responses [47, 58, 88], we propose a method
to evaluate if LLM responses strictly adhere to FDA product la-
bels (Sec.3). Our method uses a language model to first decompose
a long-form response into individual claim. Then, each claim is
evaluated to determine if it relates to one of the standardized FDA
labeling document sections. Claims that relate to the labeling docu-
ments are fact-checked by comparing it against the corresponding
labeling document to determine whether the claim is supported. We
demonstrate this methodology using synthetic user questions and
LLM responses from Claude 3 [5–7]. While many prior works have
evaluated the factiality of LLM responses, to our knowledge this
is the first work focused on evaluating medical product question
answers and ensuring adherence to the information in the labeling
documents.

2 BACKGROUND
Here we discuss medical product labeling in the USA and within-
label and off-label promotion (Sec.2.1), the specific concerns impact-
ing LLMs (Sec.2.2), previous work on detecting off-label promotion
(Sec.2.3) and recent advances in medical question answering evalu-
ation (Sec.2.4).

2.1 Medical product labeling
In the US, under the Federal Food, Drug and Cosmetic Act (FDCA),
regulated by the Food and Drug Administration (FDA), medical
products such as pharmaceutics, biologics or medical devices, must
be approved, authorized, or otherwise cleared for each intended
use by the FDA before a company can market it [83]. Off-label
use refers to using or prescribing marketed medical products for
indications (e.g. a disease or symptom) that are not included in
their FDA-approved labeling information, as well as the use of a
marketed product in a patient population (e.g. pediatric, pregnant,
etc.), dosage, or dosage form that does not have FDA approval.
Hence, the specific use is “off-label” (i.e. not approved by the FDA
and not listed in FDA-required labeling information).

Off-label use can be motivated by several factors [67, 89]. For
example, a product may be used for a specific population for which
it has not been approved. Also, if a medication has been approved
to treat a specific condition, medications from the same class of
drugs may also be used to treat that condition. Finally, if the fea-
tures of two medical conditions are similar, a physician may use
a medication approved for one of these conditions to treat both.
However, many other factors may motivate off-label use as well
[67, 89].

Off-label use is quite common in clinical practice; up to one-fifth
prescriptions are off-label [89]. There are many reasons why it
remains common. For example, adding additional indications for
an already approved medication can be costly and time-consuming,
and revenues for the new indication may not offset the expense
and effort of obtaining approval. Moreover, generic medications
may not have the requisite funding foundations needed to pursue
additional FDA approvals. Therefore, drug proprietors may never
seek FDA approval for common uses.

Although off-label use is not illegal, following off-label use rec-
ommendations without adequate medical supervision is not recom-
mended as it may inadvertently lead to harm. Off-label promotion
refers to directly promoting a medical product for any indication
that has not been listed in the product label, as well as providing
information (e.g. usage information) that does not adhere to the
FDA-approved labeling document [11, 15, 84]. Without medical
supervision or adequate warnings, off-label promotion should be
avoided.

2.2 Harms of off-label promotion by LLMs
Social media websites, including online health communities, Twit-
ter, Facebook, and others, as well as scientific articles in academic
journals, are potentially the largest source of data related to off-
label use of medical products [27]. Because LLMs are trained on
massive datasets, they can learn these off-label uses and remain
in parametric memory, or alternatively be surfaced via retrieved
augmented generation (RAG) [34].

This poses potential dangers to public health. For example, a
user may be misled to believe that an off-label use of a prescrip-
tion drug or medical product is safe or effective, exposing them to
the potential adverse side effects of a product that has not been
adequately tested for safety and effectiveness in treatment of a
particular condition. They may also be recommended treatments
that are ineffective, or even nonsensical treatments, or be recom-
mended more expensive, yet inadequately tested products. Given
the massive scale at which LLM models operate, this can lead to
significant public health risk [1, 84].

2.3 Detecting off-label use with ML
Previous work has focused on applying ML to detecting off-label
use in electronic health records [45, 46], online health communities
such as MedHelp, WebMD, Drugs.com, and HealthBoards.com [59,
93, 98, 99], and more recently social media sites [27, 40, 55]. Recent
work has leveraged transformer-based methodologies (e.g. BERT
[36]) to identify these off-label uses. However, to the best of our
knowledge, the issue of off-label promotion by LLM models has not
been explored.

Moreover, these previous works have focused on one form of
off-label use (the use of products to treat unapproved indications)
and did not study the detection of off-label use with respect to
populations (e.g. age, gender), dosage, contraindications, or any
other component of the labeling document information.

2.4 Medical question answering evaluation
Recent works on medical evaluation of LLMs for uses in healthcare
can be classified into the following categories, among others [42, 69]:
evaluations of knowledge and capability, trustworthiness, trans-
parency and fairness. These evaluations are typically use-specific,
such as evaluating LLMs for EHR answering [49, 65, 74, 95] or
summarization [77]. In the context of medical question answer-
ing, previous works have evaluated the quality of LLMs responses
to biomedical and clinical knowledge questions [12, 22, 63, 73],
showing remarkable capabilities in a number of medical knowl-
edge benchmarks such as the popular MedQA (USMLE) benchmark
[63, 70], which consists of a multi-choice dataset for medical domain
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Figure 1: Response evaluation framework.

question answering. However, LLMs have been shows to provide
responses that are not supported by the sources they provide [91],
raising concerns about both trustworthiness and transparency. In
addition to this, previous works evaluating LLMs in medicine have
focused on fairness and bias detection [20], revealing race- and
gender-based stereotypes [61, 94, 96, 97].

Despite these recent works, to our knowledge, the evaluation of
LLMs for medical product question answering and adherence to
labeling documents remains unexplored.

3 METHODOLOGY
In this section, we describe the methodology that we applied in
this work. This is illustrated in Fig.1, which provides a high-level
overview of the framework for LLM response evaluation outlining
all key components.

First, in Sec.3.1 we describe the language models used in this
work. Sec.3.2 described the dataset used as knowledge source for
factual verification. Then, Sec.3.3 describes the methods used to ex-
tract atomic claims from LLM responses. Sec.3.4 proceeds to outline
an LLM-based multi-class model for classifying the type of claims.
Finally, Sec.3.5 describes the approach to evaluate whether a given
claim is supported by the FDA labeling document information.

3.1 Models
In this work, we used Anthropic’s Claude 3 Sonnet [5–7]. This LLM
was released in 2024 and is available via a website (https://claude.ai/)
and as an API. While few details are available about the model’s de-
velopment, several aspects of its training and evaluation have been
documented in Anthropic’s research papers. These include prefer-
ence modeling [8], reinforcement learning from human feedback
[13], constitutional AI [14], red-teaming [33], evaluation with lan-
guage model-generated tests [66], and self-correction [32], among
others.

In addition to this, for the claim type classifier introduced in
Sec.3.4, we used a text-to-text encoder-decoder model, Flan-T5 [24],

which is an instruction fine-tuned version of T5 [68]. We also con-
sidered encoder-only models, specifically BERT [26], DestilBERT
[71], and RoBERTa [52].

3.2 FDALabel Database
The FDALabel database [28] is an FDA web-based application1
used to perform customizable searches of over 147,000 human over-
the-counter (OTC) and prescription medical products. It contains
up-to-date medical labeling data, including product label images,
as well as information about approved indications, active ingredi-
ents, usage, dosage, contraindications and side effects, among other
information.

We use the FDALabel database as our knowledge source for
factual medical product information.

3.3 Claim extraction
LLM responses typically consist of a large number of pieces of
information that may be a mixture of defective and non-defective,
hence making a binary judgement inadequate. Therefore, following
previous work that also sought to evaluate the factuality of LLM
responses [58, 88], we first use a claim extractor to break the LLM
response into atomic claims.

Atomic claims are short sentences containing one piece of infor-
mation each [58], and are different from normal sentences as the
latter may contain multiple pieces of information each.

Our claim extractor first breaks out the LLM response automati-
cally by splitting it into individual sentences. Specifically, we used
NLTK’s Punkt sentence tokenizer [18, 60] which divides a text into
a list of sentences by using an unsupervised algorithm. Following
this, as in FactScore [58], SAFE [88] and Fables [47], each sentence
is sent to a commercial LLM with a series of instructions to further
break it down to a series of atomic facts. In this work, we lever-
aged Claude 3, described in Sec.3.1, as it has recently shown great
performance in extracting claims from long-form text [47].

1https://nctr-crs.fda.gov/fdalabel/

https://claude.ai/
https://nctr-crs.fda.gov/fdalabel/
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3.4 Claim type classification
The goal of the claim type classifier is to classify each of the claims
in the LLM response, extracted following Sec.3.3, into one of several
claim types corresponding to the different sections of the product
labels. Specifically, in the USA the FDA requires human prescription
drugs and biological product labels to follow the Physician Label
Rule (PLR) [30]. The PLR contains a set of requirements for the con-
tent and format of the labels. Among other requirements, the PLR
dictates that FDA labeling documents must contain the following
sections: (1) Indications and usage, (2) Warnings and precautions,
and (3) Adverse Reactions [31].

The Indications and usage section includes a concise statement
of each of the product’s indications, briefly noting any major limi-
tations of use [31]. TheWarnings and precautions section includes
a concise summary of the most clinically significant safety con-
cerns that affect decisions about whether to prescribe the drug,
recommendations for patient monitoring to ensure safe use of the
drug, and measures that can be taken to prevent or mitigate harm
[31]. The Adverse Reactions section includes a listing of the most
frequently occurring adverse reactions and the criteria used to
determine inclusion (e.g., frequency cutoff rate) [31].

To evaluate the type of each claim in the LLM response, following
prior work on drug labeling text classification [35], we developed
a multiclass classification model that assigns each claim to one of
the aforementioned key PLR sections. In addition to this, a fourth
class was added for claims that do not belong to neither of the three
classes: (4) Other/Unknown. This forth class may contain claims
that are not a good fit for any of aforementioned three classes but
may still be present in other sections of the PLR, or claims that are
unrelated to the labeling document.

To implement the claim type classifier, we evaluated several mod-
eling architectures, introduced in Sec.3.1. The first one consisted of
encoder-only transformers. Specifically, we evaluated BERT [26],
DestilBERT [71], and RoBERTa [52]. In addition to this, we evalu-
ated encoder-decoder models. Specifically, we focused on Flan-T5
[24] which transforms the classification task into a text-to-text task,
such that the output of the model is the tokens denoting the class
assignment. Among the available encoder-decoder LLMs, we chose
FLAN-T5 because the quality of its generalized representation of
natural language, the possibility of easily adapting the model to a
downstream task with little fine-tuning without adjusting its archi-
tecture, and its availability in different model size configurations.
Specifically, several variants of this LLM are available, ranging
from 77M parameters for flan-t5-small to 11.3B parameters for
flan-t5-xxl. This allows us to investigate the tradeoff between
model performance and computational load. Finally, we evaluated
zero-shot prompting of Claude 3.

3.5 Faithfulness evaluator
The faithfulness evaluator evaluates each atomic claim in the LLM
response extracted by the claim extractor (Sec.3.3) and determined
to belong to classes 1-3 (that is, not class (4) Unknown/other) by the
claim type classifier. Specifically, it evaluates whether the claim is
faithful to the corresponding knowledge source, that is, the FDA
labeling document. This approach is based on prior work on LLM
agents as factuality autoraters that compared model responses to a

preset reference answer or knowledge sources, such as FactScore
[58], SAFE [88] and Fables [47]. In our work, for the evaluator LLM
agent, we used Claude 3 Sonnet, introduced in Sec.3.1. Compared
to Flan-T5, which supports up to 512 input tokens, Claude’s context
window accepts up to 200,000 tokens (roughly 150,000 words, or
over 500 pages of material). This enables each atomic claim to be
evaluated against the entirety of the FDA labeling document.

3.6 Report generation
The final stage outlined in Fig.1 merges the outputs of the claim
type evaluator (Sec.3.4) and compliance evaluator (Sec.3.5) into a
single report. If any claim classified to be types 1-3, that is, not
"Other/Unknown", is determined to contradict the product label,
then the entire response is deemed defective.

4 EXPERIMENTS AND RESULTS
To narrow down the experimentation, we considered a medical
product question answering context where a user interacts with
an LLM-based AI assistant that helps customers find answers to
medical product questions. Specifically, we focused on prescription
drugs. However, the methodology described in Sec.3 also applies to
other types of medical products, including over-the-counter drugs,
as well as both prescription and over-the-counter biologics and
medical devices.

4.1 Question and response generation
We implement a template-based method to synthetically generate
medical-related user prompts. Specifically, 20 human generated
prompt templates were generated. These templates represented
questions about indications and usage (10 templates), warnings
and precautions (7 templates) and adverse reactions (3 templates),
corresponding to the PLR labeling document sections discussed
in Sec.3.4. These were questions that a patient with no domain
knowledge may ask about a prescription drug, e.g. "I am considering
taking {DRUG_NAME}. Are there any adverse reactions associated with
the use of this medication?".

Using this template-based prompt generation method , we gener-
ated a total of 2000 synthetic user prompts for a total of 100 human
prescription drugs randomly selected from the FDALabel database
[28], out of the 57,293 present in the database2. Using Claude 3
Sonnet, we generated the corresponding LLM responses.

4.2 Atomic claim extraction
Following Sec.3.3, we extracted claims for each of the 2000 responses
we generated for the 100 prescription drugs using the 20 templates.
Table 1 shows the statistics of the claim extraction results. The
average number of claims per response was 27.69 (𝜎 = 8.00). This
was more than the average number of sentences per response,
which was 22.23 (𝜎 = 7.05). Each claim contained an average of
10.67 (𝜎 = 1.88) words. In total, we extracted 55,388 claims from
the 2,000 responses.

Human validation of a random sample of 100 extracted atomic
claims demonstrated 100% precision, that is, each claim can be

2As of May 7, 2024.
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Question type # templates # responses # sentences / response # claims / response # words / claim
Indications and Usage 10 1000 22.57 (4.72) 29.31 (5.10) 10.74 (1.85)
Warnings and Precautions 7 700 16. 89 (3.57) 20.43 (3.98) 10.58 (1.92)
Adverse reactions 3 300 33.56 (5.75) 39.26 (6.15) 10.70 (1.88)
Total 20 2000 22.23 (7.05) 27.69 (8.00) 10.67 (1.88)

Table 1: Statistics of the atomic claim extraction results.

Claim type Development set Test set
Indications and Usage 453 (45.3%) 223 (44.6%)
Warnings and Precautions 321 (32.1%) 161 (32.2%)
Adverse reaction 148 (14.8%) 69 (13.8%)
Other/Unknown 78 (7.8%) 47 (9.4%)
Total claims 1000 (100%) 500 (100%)

Table 2: Composition of development and test sets, used
to train and evaluate the claim type classifier described in
Sec.3.4

traced to the original LLM response without any extra or incorrect
information.

4.3 Claim classification

Model Precision Recall F1 score
BERT 0.69 0.61 0.65
DistilBERT 0.70 0.63 0.66
RoBERTa 0.70 0.61 0.65
Flan-T5-small 0.75 0.69 0.72
Flan-T5-base 0.82 0.75 0.78
Flan-T5-large 0.85 0.77 0.91
Claude 3 Sonnet 0.82 0.74 0.78

Table 3: Claim classification performance showing macro av-
erages of precision, recall and F1 score., for the classification
of each claim into the corresponding PLR section.

Using the claim type classifier introduced in Sec.3.4, each of the
extracted atomic claims was assigned to one of the following 4
labels: (1) Indications and usage, (2)Warnings and precautions, (3)
Adverse Reactions, and (4) Other/Unknown.

To train and evaluate the models, we used the data described in
Table 2, which was obtained by annotating a random selection of
1,500 atomic claims from the 55,388 claims extracted in Sec.4.2.

The performance on the test set of the different models evaluated
in shown in Table 3. The best performance was obtained by Flan-
T5-large, which was fine-tuned using the development set. This
surpassed the performance of Claude 3 Sonnet, which was not
fine-tuned and used zero-shot prompting.

4.4 Claim support evaluation
Finally, we evaluated the performance of Claude 3 in determining
whether a claim was supported, not supported, or irrelevant given
the corresponding product label from the FDALabel database. Given
that we expected most claims in the LLM responses from Sec.4.1
to be factually correct based on the overall performance of Claude

Label Precision Recall F1 Support
Supported 0.87 0.93 0.90 418
Not supported 0.95 0.81 0.87 371
Irrelevant 0.68 0.84 0.75 117
Overall 0.88 0.87 0.87 906

Table 4: Performance of Claude 3 in determining whether an
atomic claim extracted from an LLM response is supported,
not supported or irrelevant based on the corresponding FDA-
approved labeling document.

3 in providing high quality responses, we synthetically built an
evaluation dataset. To do so, we used the 453 claims not labeled
other/unknown described in Sec.4.3 and shown in Table 2. Each claim
was associated with the corresponding FDA labeling document. We
duplicated these claims, associating them with a different labeling
document randomly selected from 57,293 prescription drug labels
present in the FDALabel database. In total, we had 906 claims and
corresponding product labels. These were manually annotated by
a human annotator using the following 3 classes: (1) supported,
(2) not supported, (3) irrelevant. The distribution of annotations in
shown in Table 4.

Using Claude 3 Soonet and zero-shot promoting, each claim was
automatically assigned to one of the three aforementioned classes.
Statistics of the data and model performance results are reported
in Table 4.

5 CONCLUSION AND FUTUREWORK
While LLMs have shown impressive reasoning and question an-
swering capabilities, they can produce false outputs and innacurate
answers [29, 92]. Therefore, in this work, we aimed to investigate
factuality and adherence to the information provided in the rele-
vant labeling documents in medical product question answering by
LLMs.

Using a synthetically generated user question and the FDALabel
database, we demonstrated a methodology for response evaluation
that breaks down a response into a series of atomic claims. Each
claim is then evaluated to determine if it is associated to one of
the several PLR sections in the FDA labeling documents. If so, the
claim is evaluated against the corresponding labeling document
to determine if it is supported, not supported, or irrelevant based
on the the information contained in the label. Claims that are not
supported are considered to contain off-label information, as the
claim cannot be supported by the labeling document alone. The pro-
posed methodology builds upon prior work on factuality evaluation
[47, 58, 88], and uses LLMs as evaluators.
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