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1. Abstract

Heterogeneous graph neural networks (HGNNs) excel in cap-
turing graph topology and structural information. However,
they are ineffective in processing the textual components
present in nodes and edges and thus producing suboptimal
performance in downstream tasks such as node-classification.
Additionally, HGNNs lack in their explanatory power and
are considered black-box. Although, Large Language models
(LLMs) are good at processing textual information, how-
ever, utilizing them for tasks like node-prediction can be
non-trivial since it is difficult to identify the ideal graphi-
cal context and present it in a form suitable for LLMs to
consume effectively. We introduce a framework that com-
bines the strengths of both models by leveraging the context
obtained through metapaths, which are generated during
the training of HGNNs. This approach enables the under-
standing of complex and indirect relationships between dif-
ferent types of nodes. Our novel framework enhances the
prediction accuracy of HGNNs and the transparency of their
decision-making process through natural language explana-
tions provided by LLMs. We demonstrate that our proposed
framework outperforms FASTGTN (SOTA on heterogeneous
node classification tasks), an HGNN tailored for heteroge-
neous graph data, on two network datasets (DBLP citation
graph and Goodreads graph dataset), with improvements in
F1 score from 0.81 and 0.66 of the baseline to 0.9 and 0.91,
respectively. Furthermore, the efficacy of the framework in
generating explanations has been evaluated through human
evaluation, considering metrics such as helpfulness and fac-
tual correctness.

2. Introduction

Heterogeneous graphs (HGs) are typically characterized by
their diversity in types of nodes and edges. They are used

to represent complex relationships and entities in various
domains such as natural language processing [44] [34], com-
munity detection [29] [6], recommendation systems [20] [33]
and biological networks. This heterogeneity enables a nu-
anced and comprehensive representation of real-world data,
significantly enhancing the capability of graph analysis in
capturing intricate relationships and interactions [40]. Graph
neural networks (GNNs) are widely used as a tool in repre-
sentation learning on graph-structured data, demonstrating
efficacy in tasks such as node classification and link predic-
tion. [39] However, a notable limitation ofmost GraphNeural
Networks (GNNs) is their reliance on a fixed and homoge-
neous graph structure for the operations in their training
algorithm. A proposed solution involves the manual con-
struction of meta-paths, which consist of sequences linked
by heterogeneous edges, to convert a heterogeneous graph
into a homogeneous graph as defined by these meta-paths.
Since the manual construction of metapaths requires domain
experts and the accuracy of any downstream task is highly
dependent on the choice of these metapaths, thus, Heteroge-
neous Graph Neural Networks (HGNNs) such as GTN (Graph
Transformer Networks) and FastGTN have been developed
to autonomously transform a heterogeneous input graph
into functional meta-path graphs tailored for specific tasks,
while simultaneously learning node representations on these
graphs in an integrated, end-to-end manner for predictive
tasks[39]. Heterogeneous Graph Neural Networks (HGNNs)
[43] are widely used for tasks like node classification, link
prediction [9] [32], and recommendation generation [20]
[33], by effectively aggregating and learning from the infor-
mation contained within HGs with the help of meta paths
[11], that enable the extraction and understanding of com-
plex and indirect relationships between different types of
nodes [7] [32]. However, due to the complex and non-linear
transformations in HGNNs, these model often lack in their
explainability power and are considered a black box [38].
Understanding the reasoning behind their predictions or de-
cisions remains an open area of research, posing challenges



to transparency and trust, especially in critical applications
[2] [15].

Large Language Models (LLMs) have recently made signifi-
cant strides in tasks involving reasoning and utilizing gen-
eral knowledge, largely due to their ability to process and
generate human-like text [19]. These models understand
context, infer meaning from complex sentences, and gener-
ate coherent and contextually relevant text [21]. This makes
them particularly effective in tasks requiring reasoning [5],
such as answering questions [28], summarizing texts [41], or
creating content [18] [1]. Even with the exemplary reason-
ing abilities of LLMs in various domains, their usage with
structured data, particularly in the form of heterogeneous
graphs, remains largely under-explored. While Heteroge-
neous Graph Neural Networks (GNNs) effectively capture
and utilize the structural and relational information inher-
ent in graphs (like social networks, citation networks, etc.),
LLMs primarily deal with unstructured textual data. Com-
bining these two to leverage both textual understanding and
structural learning, especially for tasks related to hetero-
geneous graphs like consuming meta-path-aware context
for predictions and explanation, is an area that is still an
active area of research. The primary challenge lies in align-
ing the fundamentally different data modalities (textual vs.
graph-structured) and ensuring that the combined model
can generate predictions and explanations that are both con-
textually relevant and aware of the intricate relationships
in heterogeneous graph data, which is a proven strength
of HGNNs. This issue highlights the need for a framework
that can facilitate reasoning by providing a metapath-based
context tailored to the unique structure of HGNNs so as to
utilize the combined power of LLMs and HGNN.

Previous works have extensively explored Graph Neural
Networks (GNNs) and their explainability. Studies by [16]
[37] have provided valuable insights into the effectiveness
of different types of explainers. On a broad level, these ex-
plainers are categorized as gradient-based [26] [27] [22],
perturbation-based [36] [17] [8], decomposition-based [3]
[23], and surrogate-based models [10] [42] [30]. Particularly,
the role of meta-paths and node or edge masks in elucidating
the decision-making process of GNNs has been a central
theme. However, despite these advancements, the field still
faces significant challenges, particularly in the context of
heterogeneous graphs (HGs). The intricacies of HGs, with
their diverse node and edge types, demand more nuanced
explanation methods that can handle the complexity and
varied nature of the data.

Our framework focuses on improving the predictions and
providing explainability, emphasizing the topological impor-
tance within heterogeneous graph-structured data. Central

to our approach are metapaths, which are critical in the
classification tasks of HGNNs. These learned metapaths are
used to craft explanations and enhance the interpretability
of these networks. The key lies in how the context is con-
structed, utilizing learned metapath-based instances along
with semantically similar and randomly picked instances to
enrich the context. Our classification scores surpass those
of the FastGTN baseline, a specialized network for hetero-
geneous graph-structured data. Furthermore, the generated
explanations are preferred by human labelers for their help-
fulness and truthfulness over those produced solely on ho-
mogeneous context—i.e., explanations that neglect graph
heterogeneity and rely only on n-hop neighbors.

We also address the challenge of manually creatingmetapath-
specific prompts for any dataset and propose a novel Dy-
namic Prompt Generation framework comprising of verbal-
ized metapaths as thoughts.

The key contributions of this work are:

1. Enhanced Node Classification Method: Our approach
significantly improves node classification performance,
outperforming the baseline FastGTN model (SOTA on
heterogeneous node classification tasks)[39] when con-
sidering f1 score as the metric.

2. Dynamic Prompt Generation Framework: To overcome
the challenge of manually creating metapath-specific
prompts for each dataset, we introduce a novel prompt
generation framework that automatically extracts meta-
path types and verbalize them in natural language to
generate context-specific prompts for our LLMs. The
framework generates an automated prompt with context
enriched not just by metapath instances but also by in-
stances obtained through semantic similarity to make
the prompts contextually richer.

3. Development of a Sophisticated Explanation Framework:
Focused on heterogeneous graph-structured data, this
framework is adept at providing contextually relevant,
and easily interpretable explanations.
Through these contributions, our work stands out in its
ability to blend advanced data processing techniqueswith
user-centered design, making complex graph-structured
data more accessible and understandable.

3. Background
Definition 1: Heterogeneous Graph [24] [39]
A directed graph 𝐺 = (𝑉 , 𝐸,𝑇𝑣,𝑇𝑒 ) is defined as a het-
erogeneous graph if each node 𝑣 ∈ 𝑉 and each edge
𝑒 ∈ 𝐸 have corresponding type mapping functions 𝜏𝑣 (𝑣) :
𝑉 → 𝑇𝑣 and 𝜏𝑒 (𝑒) : 𝐸 → 𝑇𝑒 . This type of graph can
be described using a set of adjacency matrices {𝐴𝑡 } |𝑇𝑒 |𝑡=1
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or a tensor (i.e., 𝐴 ∈ R |𝑉 |× |𝑉 |× |𝑇𝑒 | ), where 𝐴𝑡 ∈ R𝑁×𝑁

represents the adjacency matrix for the 𝑡-th edge type,
and |𝑉 | = 𝑁 . In this context,𝐴𝑡 [𝑖, 𝑗] indicates the weight
of the edge of type 𝑡 from node 𝑗 to node 𝑖 . When there is
only one type of node and one type of edge, i.e., |𝑇𝑣 | = 1
and |𝑇𝑒 | = 1, the graph is referred to as a homogeneous
graph.

Definition 2: Meta-paths [32] [39]
In the context of heterogeneous graphs, a meta-path
refers to a sequence of edges that connect nodes through
multiple types of relations. Formally, a meta-path can be
represented as:

P = 𝑣1
𝑡1−→ 𝑣2

𝑡2−→ · · · 𝑡𝑛−1−−−→ 𝑣𝑛,

where 𝑣1, 𝑣2, . . . , 𝑣𝑛 denote the nodes in the sequence, and
𝑡𝑖−→ represents an edge of type 𝑡𝑖 from node 𝑣𝑖 to node
𝑣𝑖+1. Here, 𝑡𝑖 specifies the edge type of the edge (𝑣𝑖 , 𝑣𝑖+1)
along the meta-path.
Ameta-path can also be described as a composite relation
𝑅 = 𝑡1 ◦ 𝑡2 ◦ . . . ◦ 𝑡𝑛 between node 𝑣1 and 𝑣𝑛+1, where
𝑅1 ◦ 𝑅2 denotes the composition of relations 𝑅1 and 𝑅2.
Given the composite relation 𝑅 or the sequence of edge
types (𝑡1, 𝑡2, . . . , 𝑡𝑛), the adjacency matrix𝐴𝑃 of the meta-
path 𝑃 is derived from the multiplication of adjacency
matrices as 𝐴𝑃 = 𝐴𝑡𝑛 · · ·𝐴𝑡2𝐴𝑡1 .
The concept of a meta-path includes multi-hop connec-
tions and introduces new graph structures represented by
adjacency matrices. For instance, the meta-path Author-
Paper-Conference (APC),

𝐴
𝐴𝑃−−→ 𝑃

𝑃𝐶−−→ 𝐶

which can be represented as 𝐴
𝐴𝑃−−→ 𝑃

𝑃𝐶−−→ 𝐶 , results in
an adjacency matrix 𝐴𝐴𝑃𝐶 by multiplying 𝐴𝐴𝑃 and 𝐴𝑃𝐶 .

Definition 3: Metapath Instance [12]
An instance 𝑝 of the metapath 𝑃 is a particular sequence
of nodes ⟨𝑛1, 𝑛2, . . . , 𝑛𝑙 ⟩ within the network that adheres
to the pattern specified by 𝑃 . Multiple instances can cor-
respond to a single metapath.
For example, in a citation network, consider the meta-
path "Author-Paper-Author" (APA). Various sequences
of nodes, such as 𝐴𝑖𝑃𝑖𝐴 𝑗 , can fit this metapath pattern,
making them instances of the "APA" metapath.

Heterogenous Graph Neural Network and
FastGTN[40]
Heterogeneous graph neural networks (HGNNs) are ad-
vanced models designed to handle the complexity of het-
erogeneous graphs (HGs), which consist of diverse types
of nodes and edges. Unlike traditional graph neural net-
works, HGNNs account for the semantic and structural
heterogeneity inherent in HGs. They use deep learning

techniques to learn embeddings from node attributes
and interactions, effectively capturing the rich, multi-
faceted information within these graphs. This capability
makes HGNNs particularly powerful for tasks requir-
ing a nuanced understanding of complex networks. The
training methodology [39] employed by Graph Trans-
former Networks (GTN) and FastGTN involves the trans-
formation of original graphs into multiple subgraphs
referred to as metapaths above. This transformation is
integral to the learning process, where node representa-
tions are further derived through convolution operations
conducted on top of these metapaths. Learnt node rep-
resentations on top of these metapaths are further used
for downstream tasks like node classification. Addition-
ally, the methodology used in FastGTN also provides the
weighting/attention-score on how it influences the node
prediction. They also demonstrated that meta-paths pre-
defined by domain knowledge consistently receive top
rankings from FastGTNs, further validating their influ-
ence through the use of attention scores.

Explainability of Supervised Machine Learning [4]
Consider a supervised task 𝑇 with the aim of learning
a mapping from 𝑋 to 𝑌 , and a model𝑀 trained for this
task. Given a set of (𝑥,𝑦) pairs ⊆ (𝑋,𝑌 ) and the model
𝑀 , generate an explanation 𝑒 from a given set 𝐷𝐸 such
that 𝑒 “explains” the prediction 𝑦 = 𝑀 (𝑥).
These explanations can be either local to a single test in-
put (𝑥,𝑦) or global when they explain prediction over a
specific dataset𝐷 ′ ⊆ (𝑋,𝑌 ). Further, the explanation can
be generated either post-hoc (i.e., after the model train-
ing) or ante-hocwhere themodel itself is self-interpretable,
i.e., it explains its predictions.

Local explanations only consider the local neighborhood
of the given data instance while global explanations are
concerned about the model’s overall behavior and thus,
search for patterns in the model’s predictions. In this
work, we focus on Local explanations.

GNNs Explainability
The survey [14] presents a comprehensive overview of
GNN explainability techniques. There exists a research
gap for techniques that generate natural language ex-
planations that are crucial to the practical application
of GNN utilizing metapaths, which are crucial for inter-
preting heterogeneous graph neural networks (HGNNs).
Metapaths [11] represent sequences of node types and
edge types in heterogeneous graphs, offering a pathway
to understand complex relationships and interactions
within the data.
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Most current explainability methods discussed in [14]
focus on visual or quantitative interpretations, such as
highlighting important nodes and edges or providing im-
portance scores. These methods, while useful, fall short
of offering intuitive, human-readable explanations that
describe the reasoning behind a model’s prediction in nat-
ural language. The integration of metapaths into genera-
tive natural language explanations would bridge this gap
by translating the intricate relationships within heteroge-
neous graphs into comprehensible narratives, enhancing
interpretability for non-expert users.

Use of LLMs for model interpretability and natural
language explanations
The work presented in [25] proposes the opportunity to
rethink LLMs for interpretability with a more ambitious
scope. LLMs can elicit more elaborate explanations than
the previous generation of interpretable ML techniques.
While previous methods have often relied on restricted
interfaces such as saliency maps, LLMs can communicate
directly in expressive natural language.

4. Proposed methodology
The approach involves providing a combination of con-
text coming from verbalized representation ofmeta-paths
as well as context based on semantic similarity.
Figure 1, depicts the detailed overview of the proposed
methodology. We explain these steps in detail in the fol-
lowing subsections:

a. These meta-paths are created as part of the training of
fastGTN for the purpose of node classification. See [39]
for the training of fastGTN andmeta-path computation.

b. Top-K metapath types are chosen among the total
metapath types based on the descending order of the
weights on how these influence the node classification.
Chosen metapath types are then further filtered based
on whether they start with the target node type or not.

c. For an LLM to comprehend and make use of metapaths,
these need to be verbalized and summarized in natural
language, this is done using a one-shot LLM call, LLM
is prompted to generate a verbal interpretation of a
given metapath type. This involves presenting the LLM
with a structured prompt consisting of node-type, edge-
type, and the meaning of different edges and asking
it to produce a logical and meaningful explanation.
For the verbalization of metapath, refer to figure 2 for
verbalization instructions prompt template, figure 3 for
the augmented prompt and 4 for example generation.

d. Depending on the local graph topology of the target
node, multiple instances of each metapath type are
possible. To construct the contextual representation,
instances of distinct metapath types are sampled based
on the normalized weights assigned to the correspond-
ing metapath types. The verbal interpretation derived
from the initial analysis must then be applied to all
instances of a given metapath type through the utiliza-
tion of regular expressions.

e. As the datasets and use cases pertaining to hetero-
geneous graphs often involve nodes with textual at-
tributes, the textual content associated with each node
participating in the metapath instances is additionally
incorporated alongside the verbalized representation
of the metapath. Refer to figure 7 for the format of the
metapath context along with textual attributes

f. Since the contextual information derived solely from
the metapath may be insufficient, we also consider the
textual content associated with nodes exhibiting high
semantic similarity to the target node under consider-
ation.

g. Subsequent to providing the contextual information,
a series of instructions is presented in a step-by-step,
chain-of-thought manner to establish a connection be-
tween the contextual information derived from the
graph and the target node. This process is designed to
elicit predictions and explanations from the LLM by
leveraging the provided context. Refer to figure 5 for
the CoT style instructions for prediction and explana-
tion.

In summary, our LLM prompting strategy involves a two-
step process: first, generating verbal interpretations of
metapaths, and second, using these interpretations to
build a context for accurate prediction and explanation.
This approach ensures that the LLMs can effectively lever-
age the metapaths for our classification and explanation
tasks.

5. Dataset description
We evaluate our model on 2 public heterogeneous graph
datasets:, We use one citation network dataset DBLP [13]
, and a books dataset Goodsreads [31] [? ]. Though the
raw datasets consisted of multiple labels, for our analy-
sis we restricted to just using three labels. The labels of
target node type books in Goodreads are “fiction”, “non-
fiction”, and “romance”, whereas in DBLP the labels in
target node type of paper are “machine learning”, “com-
puter networking”, and “theoretical computer science”.
The statistics of the filtered datasets and the associated
heterogeneous graphs used in our experiments are shown
in Table 1.
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Figure 1. Proposed methodology

DBLP consists of three types of nodes (papers (P), authors
(A), conferences (C)), four types of edges (PA, AP, PC, CP),
and field of study for papers as labels. The Goodreads
dataset contains five types of nodes (book (B), author (A),
format (F), publisher (P), language code (L)), and theme of
books as labels. Both datasets are characterized by textual
attributes for specific node types: the Goodreads dataset
includes book descriptions as the textual component for
its ’book’ node type, while the DBLP dataset includes
abstracts as the textual component for its ’paper’ node
type. Other node types in both datasets do not possess
textual components except their title.

DBLP dataset as used in the FastGTN [39] was not textu-
ally attributed in the same way as ours since their version
of the DBLP dataset had only the title of the nodes as
the textual component. We selected textually attributed
graphs due to their widespread occurrence in real-world
scenarios. [35]. The main statistics of the two datasets
are summarized in Table 1.

6. Experimental setup
6.1 Comparison with other approaches
Homogeneous Context For checking whether the het-
erogeneous context of the graph as provided in the form

Dataset Node Types Edge Types

DBLP
Author: 17,567 Author-Paper: 18,810
Conference:
1,562

Conference-Paper:
5,687

Paper: 6,000 Paper-Author: 18,810
Paper-Conference:
5,687
Paper-Paper: 261

Goodsreads

Author: 4,452 Author-Book: 4,762
Book: 3,600 Book-Author: 4,762
Publisher: 1,790 Book-Language code:

2,040
Format: 26 Language code-Book:

2,040
Language code:
47

Book-Publisher:
2,665
Publisher-Book:
2,665
Book-Book: 32
Book-Format: 2,762
Format-Book: 2,762

Table 1. Dataset statistics for DBLP and Goodreads.
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of a metapath is adding any value, we ignore the het-
erogeneity aspects of the graph structure and treat it as
a homogeneous graph. This approach allowed us to as-
sess the classification performance and the quality of the
explanations obtained from the language model (LLM)
without considering the heterogeneous context.

We tested different levels of neighborhood hops by tak-
ing random neighbors at 1, 2, and 3 hops for our use
case. By extensively evaluating different hop levels, we
aimed to validate the significance of heterogeneity and
the potential advantages of a meta-path-based approach.
For the approach based on 1 hop, we randomly selected
N samples from the immediate neighborhood (one hop
away). For the 2-hop approach, we randomly selected
N/2 neighbors from the first hop and N/2 instances from
the second hop. Similarly, for the 3-hop approach, we
randomly selected N/3 neighbors from the first, second,
and third hop respectively.

The homogeneous context obtained from these different
hop levels was then passed as input to our LLM prompt.
By analyzing the classification performance and the qual-
ity of the explanations generated by the LLM using this
homogeneous context, we aimed to assess the potential
benefits of incorporating heterogeneous graph structures
and the meta-path-based approach in our analysis.

Using LLM with examples of labels as the only con-
text Since there can be leakage of information as LLMs
are trained on the internet corpus, so we would like to
check the performance of prediction and explanation by
using LLM with examples as the only context. Additional
gain on top of this approach will tell us the lift for using
alternate mechanisms of context.

Task 1: Node Classification task
In our experiments, we evaluated the performance of our
node classification models on two distinct datasets DBLP
and Goodsreads, each with specific characteristics and
challenges. Table 4 of the appendix gives details about
LLM Inference Hyperparameters, Table 6 gives details
about Fast-GTN Training Hyperparameters, Table 8 gives
details about dataset Label Types and Distribution used
in Experiment.

Considering the latency and the cost of tokens, we re-
stricted the number of metapath instances to a fixed
number (here 40), and for an equivalent comparison to
the approach involving homogeneous context, the num-
ber of neighbors has been restricted to the same num-
ber. Table 7 gives details about Hyperparameters used
in Homogeneous Context and Table 5 for the Meta-Path
Hyperparameters.

Task 2: Explanation Generation Ability
Explanation Metrics: Human Evaluation: The pro-
posed methodology demonstrated superior performance
compared to the FastGTN and other alternative approaches,
such as utilizing LLMs with only examples as context or
employing homogeneous context when considering the
prediction task. This outcome indirectly suggests that an
approach exhibiting better prediction capabilities should
also provide more accurate and informative explanations.
We would like to measure the quality of explanation in
both absolute as well as relative terms. For a relative com-
parison, we would like to restrict ourselves to comparing
only with the homogeneous context since its prediction
performance is closer compared to the proposed method-
ology. Explanation was compared for these approaches
when both of them gave the same prediction.

Human evaluators are shown explanations from approaches
1-3 and asked to rank them based on their preferences.
Post-ranking, evaluators rate each explanation on a scale
of 1-3, considering aspects such as helpfulness (with 3
being the highest and 1 the lowest).

Helpful Explanation Label Definitions for Human La-
belling:

a. Poor

• Clarity: Extremely confusing with excessive jargon
or complex language.

• Relevance: Fails to address themain question or topic,
often veering off-topic.

• Depth: Lacks meaningful insight, oversimplifies, or
omits crucial information.

b. Partial

• Clarity: Understandable but lacks clarity in parts.
• Relevance: Addresses the topic but includes irrele-
vant information or misses key aspects.

• Depth: Provides basic information but lacks impor-
tant details and insights.

c. Complete

• Clarity: Very clear, with well-articulated concepts
and points.

• Relevance: Highly relevant and focused, with little
to no irrelevant information.

• Depth: Comprehensive understanding, including im-
portant details and nuanced insights.
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Dataset Approach Micro_f1 Macro_f1

DBLP

Fast-GTN 0.81 0.82
Only LLM with 5 shot examples per label 0.767 0.793
LLM with context up to one-hop and 5 shot random examples per label 0.721 0.745
LLM with context up to two-hop and 5 shot random examples per label 0.78 0.81
LLM with context up to three-hop and 5 shot random examples per label 0.799 0.825
LLM with metapath as context and 5 shot random examples per label 0.876 0.882
LLM with metapath as context and 2-shot semantic examples per label and 3-shot
random examples per label

0.90259 0.90533

Goodreads

Fast-GTN 0.667 0.672
Only LLM with 5 shot examples per label 0.771 0.791
LLM with context up to one-hop and 5 shot random examples per label 0.84 0.853
LLM with context up to two-hop and 5 shot random examples per label 0.843 0.856
LLM with context up to three-hop and 5 shot random examples per label 0.855 0.8606
LLM with metapath as context and 5 shot random examples per label 0.877 0.886
LLM with metapath as context and 2-shot semantic examples per label and 3-shot
random examples per label

0.904 0.909

Table 2. Comparison of different approaches on DBLP and Goodreads datasets.

Dataset % of labels with
factual correctness
rating as 3

% of labels with
Helpfulness rating
as 3

% of labels with
Helpfulness rating
as 2

DBLP
LLM with homogeneous context 95.12 10 90
LLM with metapath as well as semantic
examples (proposed methodology)

97.5 30 70

Goodreads
LLM with homogeneous context 94.23 19.23 76.92
LLM with metapath as well as semantic
examples (proposed methodology)

96.15 38.46 57.69

Table 3. Comparison of Factual Correctness and Helpfulness Ratings between Different Approaches for DBLP and Goodreads
Datasets

Factual correctness explanation Label Definitions for Hu-
man Labelling:

a. Incorrect

• Accuracy: Contains factual errors or unsubstantiated
claims.

• Consistency: Contains contradictions or statements
that are inconsistent with verified data.

b. Partially Correct

• Accuracy: Mostly accurate but includes minor errors
or oversimplifications.

• Consistency: Generally consistent but has occasional
discrepancies that need clarification.

c. Fully Correct

• Accuracy: No factual errors, fully accurate through-
out.

• Consistency: Completely consistent with current,
verified data and information.

These metrics and methods enable us to rigorously eval-
uate the explanation generation capabilities of different
approaches, ensuring a blend of objectivity and human-
centric assessment. In order to perform the human evalu-
ation for both of the datasets i.e. Goodreads and DBLP, we
had setup AWS Sagemaker ground truth jobs and hired
Human labelers, who performed the ranking exercise
independently.
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7. Results
Task 1: Node Classification
Tables 2 demonstrate the results of different methods
used for node classification. In this study, we evaluated
the performance of our proposed method on two cita-
tion network datasets, DBLP and Goodreads. Our results
demonstrate a significant improvement in the micro F1
score compared to the baseline FastGTN method (SOTA
on heterogeneous node classification task). Specifically,
on the DBLP dataset, our method achieved a micro F1
score of 0.9, representing an increase from 0.81 obtained
by FastGTN. Similarly, on the Goodsreads dataset, our
method exhibited a micro F1 score of 0.90, which is a
substantial enhancement from the baseline score of 0.66.
The performance of FastGTN was inferior in both the
datasets since the target node types were textually attrib-
uted and FastGTN though better in identifying patterns
from graph topology but was not as good as LLM in mak-
ing use of the textual component for the prediction task
as node classification.

To investigate the contribution of the LLM and the pro-
posed methodology, we conducted an experiment where
the LLM was provided with only examples as context. In
this scenario, the micro F1 scores were approximately
0.76 for DBLP and 0.77 for Goodreads. These results indi-
cate that the performance gain observed in our proposed
methodology is primarily attributed to the incorporation
of context from the graph, rather than relying solely on
the LLM’s internal memory.

Furthermore, our analysis revealed that the performance
improvement when utilizing a heterogeneous context
in comparison to that of a homogeneous context can
be attributed to the use of verbalized metapaths. These
metapaths encode the local graph topology surrounding
the target node, enabling the LLM to effectively leverage
the contextual information that is highly influential for
node classification.

Lastly, we observed an additional performance gain when
incorporating examples of labels that exhibit semantic
similarity to the target node, compared to using random
examples. This finding highlights the importance of lever-
aging semantic relationships between labels in the node
classification task.

Task 2: Explanation Generation Ability
Based on the results presented in the table, the proposed
methodology incorporating metapath as well as seman-
tic examples outperforms the homogeneous context ap-
proach in terms of both factual correctness and helpful-
ness ratings. For the DBLP dataset, the percentage of
labels with a factual correctness rating of 3 is slightly

higher in the proposed methodology (97.5%) compared
to the homogeneous context approach (95.12%). Further-
more, the proposed methodology shows a substantial
improvement in the percentage of labels with a helpful-
ness rating of 3, achieving 30% compared to just 10% for
the homogeneous context. Additionally, the percentage
of labels with a helpfulness rating of 2 is lower in the
proposed methodology (70%) than in the homogeneous
context approach (90%), indicating a higher overall help-
fulness.

Similarly, for the Goodreads dataset, the proposedmethod-
ology also demonstrates superior performance. The fac-
tual correctness rating of 3 is marginally higher at 96.15%
compared to 94.23% for the homogeneous context. The
helpfulness rating of 3 is significantly better in the pro-
posed methodology (38.46%) versus the homogeneous
context (19.23%). The percentage of labels with a helpful-
ness rating of 2 is reduced in the proposed methodology
(57.69%) compared to the homogeneous context approach
(76.92%).

These results indicate that integrating metapaths and
semantic examples into the context not only enhances
the factual correctness of the labels but also significantly
improves the perceived helpfulness of the explanations,
thereby providing a more effective and user-friendly in-
terpretability framework.

8. Conclusion
The proposed approach combines Heterogeneous Graph
Neural Networks (HGNNs) with Large Language Models
(LLMs) through the utilization of verbalized metapaths.
This hybrid methodology demonstrates significant en-
hancements in prediction accuracy and results in inter-
pretability. The incorporation of verbalized metapaths
proves advantageous, providing a nuanced understand-
ing of node interactions that traditional methods often
overlook. Furthermore, our approach presents an efficient
strategy for mitigating the computational demands asso-
ciated with fine-tuning large-scale language models, fa-
cilitating efficient model deployment. Future research en-

deavorsmay focus on extending these techniques to other
domains and evaluating their performance in real-world
applications where both prediction accuracy and inter-
pretability are crucial for decision-making processes.
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Appendix
Experimental Details

Table 4. LLM inference Hyperparamters

LLM choice temperature top_P max_tokens_to_sample
Claude 2.1 0 1 500

Table 5. Meta-Path Hyperparameters

Number of type of metapaths 10
Total metapath instances 40

Table 6. Fast-GTN training hyperparameters

Dataset Num_layers Dropout Num_channels hidden_dim lr
heightDBLP 3 0.3 4 128 0.01
Goodreads 3 0.3 8 128 0.001

Table 7. Hyperparameters in homogeneous context

Count of neighbours 1-hop 2-hop 3-hop
Homogeneous context upto 1 hop 40 0 0
Homogeneous context upto 2 hop 20 20 0
Homogeneous context upto 3 hop 13 13 14

Table 8. Dataset: Label Types and Distribution

Dataset type Target node type Labels Label distribution
DBLP paper machine_learning, theoreti-

cal_computer_science, com-
puter_networking

Equally distributed

Goodsreads books fiction, non-fiction, romance Equally distributed
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Prompt Details

Figure 2. Verbalization of metapath: Prompt template:

Metapath Summarization Prompt

Human: You are a human whose goal is to generate the meaning of different meta-paths in a heterogeneous

graph

network. You are provided with all the node types and edge-type and the underlying relation between them.

Please find the node types enclosed inside the XML tags <node-type>,</node-type>

<node-type>node-type</node-type>

Edge-type and their underlying relation are enclosed between XML tags <edge-relation>,</edge-relation>

<edge-relation>edge-relation</edge-relation>

Please find one meta-path summarization example below: meta-path-summarization-example-1

Can you generate the meaning of the following meta-paths enclosed inside XML tags <meta-path>,</meta-path>

<meta-path>meta-path</meta-path>

Write the meaning inside xml tags <meaning> </meaning>. Enclose the meaning of every metapath individually

into xml tags <meaning>,</meaning>.

Assistant:
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Figure 3. Augmented Prompt in the template mentioned in Figure 2.

Prompt After Augmenting

Human: You are a human whose goal is to generate the meaning of different meta-paths in a heterogeneous graph network. You
are provided with all the node types and edge types and the underlying relation between them.

Please find the node types enclosed inside the XML tags <node-type>,</node-type>
<node-type>
P: paper
A: author
C: conference
</node-type>

Edge-type and their underlying relation are enclosed between XML tags <edge-relation>,</edge-relation>
<edge-relation>
PC:=PC (P stands for bcd, S stands for efg) : Paper bcd is published in conference efg
CP:=CP (C stands for efg, P stands for bcd) : Conference efg has paper bcd as one of its submission
PA:=PA (P stands for bcd, A stands for hij) : Paper bcd has been authored by hij
AP:=AP (A stands for hij, P stands for bcd) : Author hij has authored paper bcd
PP:=PP (P stands for bcd, P stands for klm) : Paper bcd has referenced another paper klm
</edge-relation>

Please find one meta-path summarization example below:
BAB (B stands for xyz, A stands for abc, B; stands for def) : Book xyz is related to book def as they are both written by
the same author abc. They might be similar semantically or have a similar theme

Can you generate the meaning of the following meta-paths enclosed inside XML tags <meta-path>,</meta-path>
<meta-path>
PAP; (P stands for NbrnT, A stands for P3fAb, P; stands for nFbmO)
PP;A (P stands for NbrnT, P; stands for P3fAb, A stands for nFbmO)
PP;C (P stands for NbrnT, P; stands for P3fAb, C stands for nFbmO)
PA (P stands for NbrnT, A stands for P3fAb)
PC (P stands for NbrnT, C stands for P3fAb)
PP;P;; (P stands for NbrnT, P; stands for P3fAb, P;; stands for nFbmO)
PP; (P stands for NbrnT, P; stands for P3fAb)
PCP; (P stands for NbrnT, C stands for P3fAb, P; stands for nFbmO)
PP;AP;; (P stands for NbrnT, P; stands for P3fAb, A stands for nFbmO, P;; stands for HnKYa)
</meta-path>

Write the meaning inside xml tags <meaning> </meaning>. Enclose the meaning of every metapath individually into
XML tags <meaning>,</meaning>.

Assistant:
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Figure 4. Example generation: Verbalization of metapath

Output Example for Summarizing Meta-path

<meaning>PAP; (P stands for NbrnT, A stands for P3fAb, P; stands for nFbmO): Paper NbrnT is related to paper
nFbmO through author P3fAb. This meta-path suggests that both papers are likely to share thematic or research
similarities due to the common authorship.</meaning>

<meaning>PP;A (P stands for NbrnT, P; stands for P3fAb, A stands for nFbmO): Paper NbrnT references paper
P3fAb, which is authored by nFbmO. This path could indicate that the research in paper NbrnT is influenced or
builds upon the work done by author nFbmO in paper P3fAb.</meaning>

<meaning>PP;C (P stands for NbrnT, P; stands for P3fAb, C stands for nFbmO): Paper NbrnT references paper
P3fAb, which is published in conference nFbmO. This meta-path might suggest a thematic or subject matter
connection between the two papers, focused on the themes of the conference.</meaning>

<meaning>PA (P stands for NbrnT, A stands for P3fAb): Paper NbrnT has been authored by P3fAb. This indicates
a direct authorial relationship where P3fAb contributes to the content and research findings of the paper
NbrnT.</meaning>

<meaning>PC (P stands for NbrnT, C stands for P3fAb): Paper NbrnT is published in conference P3fAb. This
meta-path suggests that the paper’s subject is relevant to the themes or focus areas of the conference.</meaning>

<meaning>PP;P;; (P stands for NbrnT, P; stands for P3fAb, P;; stands for nFbmO): Paper NbrnT references
paper P3fAb, which in turn references another paper nFbmO. This extended chain of references may indicate a
progression or evolution of ideas and research across the three papers.</meaning>

<meaning>PP; (P stands for NbrnT, P; stands for P3fAb): Paper NbrnT references paper P3fAb. This relationship
implies a direct citation or intellectual linkage, suggesting that NbrnT builds upon or discusses the research
presented in P3fAb.</meaning>

<meaning>PCP; (P stands for NbrnT, C stands for P3fAb, P; stands for nFbmO): Paper NbrnT is published in
conference P3fAb, and conference P3fAb features another paper nFbmO. This suggests a thematic linkage between
the two papers based on their common selection for the same conference.</meaning>

<meaning>PP;AP;; (P stands for NbrnT, P; stands for P3fAb, A stands for nFbmO, P;; stands for HnKYa):
Paper NbrnT references paper P3fAb, which is authored by nFbmO who also authored paper HnKYa. This complex
meta-path suggests a deep thematic or research linkage potentially due to the repeated involvement of author
nFbmO.</meaning>
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Figure 5. Prompt template for getting prediction and explanation

LLM Only - Get Prediction and Explanation

Human: {task_description}
-provide the reasoning logic or methodology to get
the prediction for the node. Post obtaining the
prediction, you have to provide the justification
and explanation.

The name of the node for which you have to predict
the label and provide an explanation is enclosed
in XML tags <node-name>{node_name}</node-name>
and its description is enclosed in
<node-description>{node_description}</node-description>

Please find the examples related to different
label types, as enclosed in XML tags
<example-context>{examples}</example-context>

Assistant: Thanks for providing the
task-description and examples. Do you have
any other instructions?

Human:
0. Create short notes for the context and the
examples in a way that you can relate the
description of the node you are required to
predict to that of context.
1. Discuss the relevance of the given node and
its description to the context and examples and
write it inside <relevance></relevance> XML tags.
This is also a space for you to write down your
reasoning and is not meant for the user.
2. Provide the methodology to get the prediction
for the label of the node. Enclose the methodology
in xml tags <methodology>,</methodology>. This is
just the space for your notes and is not meant
to be shown to the user. Please make sure this
methodology is written in the form of steps.
3. Get the prediction of the label of the
node, and enclose the prediction in XML tags.
<prediction>,</prediction>
4. Get the explanation behind the prediction for
the label of the node. Enclose it in XML tags
<explanation>,</explanation>

Assistant:

Proposed Prompt Template in Proposed Methodology

Human: {task_description}
-provide the reasoning logic or methodology to get
the prediction for the node. Post obtaining the
prediction, you have to provide the justification
and explanation.

The name of the node for which you have to predict
the label and provide an explanation is enclosed
in XML tags <node-name>{node_name}</node-name>
and its description is enclosed in
<node-description>{node_description}</node-description>
Please find the context for this node enclosed in
XML tags <relevant-context>, </relevant-context>:
<context>{context}</context>

The above context can consist of various
documents having structural as well as textual
information related to the connectivity of the
node with its neighbors in the graph.

Please find the examples related to different
label types, as enclosed in XML tags
<example-context>{examples}</example-context>

Assistant: Thanks for providing the
task-description, context, and examples. Do
you have any other instructions?

Human:
0. Create short notes for the context and the
examples in a way that you can relate the
description of the node you are required to
predict to that of context. Please also consider
the relationship of {node_name} to its neighboring
nodes while writing your notes.
1. Discuss the relevance of the given node and
its description to the context and examples and
its relationship to other nodes and write it in
inside <relevance></relevance> XML tags. This is
also a space for you to write down your reasoning
and is not meant for the user.
2. Provide the methodology to get the prediction
for the label of the node. Enclose the methodology
in xml tags <methodology>,</methodology>. This is
just the space for your notes and is not meant
to be shown to the user. Please make sure this
methodology is written in the form of steps.
3. Get the prediction of the label of the
node, and enclose the prediction in XML tags.
<prediction>,</prediction>
4. Get the explanation behind the prediction
for the label of the node. The relationship of
{node_name} to its nodes in its neighborhood can
help you get a better explanation. Enclose it in
XML tags <explanation>,</explanation>

Assistant:
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Figure 6. Example Placeholder for Task Description in Proposed Methodology

Task Description - DBLP Dataset (Field of Study Classification)

You are provided with an academic citation network and you have to predict the label of the target node and

provide an explanation. By target node, we mean to refer to the paper, and by label, we refer to the

field of the study of the paper. Please predict the labels from only these categories: <label1>

machine_learning</label1>, <label2>computer_networking</label2>, <label3>theoretical_computer_science</

label3>.

Figure 7. Description of placeholder for context in proposed methodology

Meta-path context format

\{metapath instance meaning 1\}\n

info/details related to \{node 1 in metapath instance 1\}: \{key 1\} = \{value 1\}\n

info/details related to \{node 1 in metapath instance 1\}: \{key 2\} = \{value 2\}\n

... (continue for as many key-value pairs as needed for this node)\n

info/details related to \{node 2 in metapath instance 1\}: \{key 1\} = \{value 1\}\n

info/details related to \{node 2 in metapath instance 1\}: \{key 2\} = \{value 2\}\n

... (continue for as many key-value pairs as needed for this node)\n

... (continue for as many nodes as needed in this metapath instance)\n\n

\{metapath instance meaning 2\}\n

info/details related to \{node 1 in metapath instance 2\}: \{key 1\} = \{value 1\}\n

info/details related to \{node 1 in metapath instance 2\}: \{key 2\} = \{value 2\}\n

... (continue for as many key-value pairs as needed for this node)\n

... (continue for as many nodes as needed in this metapath instance)\n\n

... (continue for as many metapath instances as needed)
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