CodePatchLLM: Configuring code generation using a static
analyzer

Danil Shaikhelislamov
Ivannikov Institute for
System Programming of the
Russian Academy of Sciences
Moscow, Russia
shaykhelislamov.ds@ispras.ru

Mikhail Drobyshevskiy
ISP RAS Research Center for
Trusted Artificial Intelligence

Moscow, Russia

Andrey Belevantsev
Ivannikov Institute for
System Programming of the
Russian Academy of Sciences
Moscow, Russia

Assist setting

Static Analyser Feedback
(SAFe)

/

-- >

Prompt

Environment
Compiler

Generated
Code

Program
Analysis Tools

_

Compiler
Feedback

- > Static Analyser
Feedback

I 4)

Error: Compiler message

Static Analyser
message_1
Static Analyser
message_2

If Feedback is ()
terminate process

/ - /

Figure 1: Overview of the model-agnostic CodePatchLLM.

ABSTRACT

The development of large language models (LM) has significantly
advanced the field of code generation. A survey of developers by
Stack Overflow has found that 70% of respondents are using or plan
to use Al coding tools this year [44]. Current approaches mainly rely
on supervised fine-tuning objectives borrowed from text generation,
neglecting unique sequence-level characteristics of code, including
but not limited to compilability as well as syntactic and functional
correctness. To address this limitation, we propose a new approach
to code generation that synergistically combines pre-trained LLM
models with software analysis tools, which are widely used to check

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GenAlI Evaluation KDD2024, August 26, 2024, Barcelona, Spain

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-Xxxx-X/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

for vulnerabilities while validating the code. By utilizing expanded
messages from code compilation and analysing, proposed approach
seamlessly integrates external code-specific knowledge into the
prompt chaining process. We develop CodePatchLLM, an extension
for LLM that utilizes Svace feedback for code generation. It is im-
portant to note that CodePatchLLM is a model-agnostic framework
that can be used across different program languages. Extensive
experiments on LeetCode dataset demonstrate the effectiveness
of our proposed approach compared to backbone model, CodeL-
lama, achieving significant improvements in compilation success
rates and functional correctness across Java, Python and Kotlin
languages. Our CodePatchLLM code is available online!.

KEYWORDS
Large Language Model, Static Analyzer, Code Quality

ACM Reference Format:
Danil Shaikhelislamov, Mikhail Drobyshevskiy, and Andrey Belevantsev.
2024. CodePatchLLM: Configuring code generation using a static analyzer. In

!https://github.com/dsshay/CodePatchLLM

https://orcid.org/0000-0002-9734-7937
https://orcid.org/0000-0002-1639-9154
https://orcid.org/0000-0003-2817-0397
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/dsshay/CodePatchLLM

GenAl Evaluation KDD2024, August 26, 2024, Barcelona, Spain

Proceedings of KDD workshop on Evaluation and Trustworthiness of Generative
AI Models (GenAI Evaluation KDD2024). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Code generation or program synthesis aims to automatically gen-
erate source code that adheres to a specified programming require-
ment, which is typically described in a natural language [10, 42].
Recently, with the development of large language models (LLM),
techniques based on LLMs [1, 35, 36] have demonstrated impressive
ability in code generation. However, challenges persist with the
use of generated code in complex systems [7, 8, 12, 54], indicating
a remaining gap in fully meeting user expectations.

In this context, learning from automatic defect detection tools
demonstrates exciting potential to enhance the comprehension of
complicated technical specifications and the quality of generated
codes [27]. Feedback from compilation and execution results is
instrumental in directly ascertaining the functional correctness of
programs [8, 45]. Researchers have introduced leveraging compiler
feedback from unit tests to guide the exploration of the output
space of LLMs [29, 40] using reinforcement learning techniques.
In other words, authors fine-tuned the model so that the output
program was built successfully and passed tests.

Nevertheless, optimizing LLMs for code generation via compiler
feedback presents several challenges. Firstly, the increasing com-
plexity of human requests to LLMs often results in the generation
of longer code sequences, and this worsens the final program qual-
ity [11, 22]. Secondly, feedback solely from independent unit tests
and a compiler is not enough for reliability of such a program.
Static analysis tools conduct more thorough source code checks
than compilers, which usually only detect syntax errors [4].

Automated code generation (or program synthesis) has attracted
much attention over the past few years [30], because of its potential
to improve the productivity of developers, as well as to speed up
the software development [33]. Companies that hastily implement
generative solutions or succumb to the “Al hype” may face a poten-
tial increase in cybersecurity risk. Recent work [15, 43] highlights
the importance of using robust implementations of generative Al
in a business environment to mitigate such risks. The demand for
reliable and secure code has never been higher.

To tackle these challenges, several approaches are proposed,
such as filtering and repairing the non-executable synthesized pro-
grams [21], using energy-based generation models with execution
constraints [20], and reinforcement learning (RL) fine-tuning mech-
anisms [8, 23, 40]. However, existing approaches are often tailored
to a specific programming language (PL) or task, e.g., [23] is exclu-
sively designed for program synthesis task in Python.

We introduce a new approach, illustrated in Fig. 1, combining re-
sults of program analysis and LLM for code generation. An overview
of the proposed approach. Generated Code are first initialized from
the pre-trained LLM for the designed task. The generated code is
completely transferred to the compiler and static analyzer (SAFe
module) suitable for the selected programming language. Detected
warnings and errors are collected in a single pool of messages that
are transmitted to Assist Setting. Finally, the LLM model prompt is
updated based on the obtained values and returns.

Shaikhelislamov et al.

Initially, the output of any pre-trained LLM tailored for code
generation is transferred to the program analysis module, SAFe
(Software Analysis Feedback). The module includes but is not lim-
ited to the use of a compiler and a static analyzer. It is assumed
that it is possible to include other analysis tools such as DAST [9],
IAST [32]. In particular, SAFe analyzes the entire file generated by
the program to identify potential vulnerabilities in the architec-
ture of the solution that may occur when using external libraries
and classes. The usual classic static analysis stages are performed
on the generated program, namely, capturing the program build
to generate automatically the required intermediate representa-
tion, lightweight analysis of the program’s syntax trees (AST-level
analysis), and interprocedural dataflow analysis (which is both
context-sensitive and path-sensitive based on symbolic execution).
Eventually, the goal is to identify all possible errors in the generated
program, before it is used by humans. One distinctive feature of
this approach is the utilization of feedback from program analysis
tools as additional contextual clues for the LLM.

Specifically, messages generated by the compiler and static an-
alyzer are incorporated into the LLM’s prompt as supplementary
comments (in Assist Setting). By enriching the prompt with in-
sights gathered from program analysis, the LLM gains a deeper
understanding of the desired code’s requirements, constraints, and
potential pitfalls. Once the prompt is augmented with relevant
analysis feedback, the LLM is prompted to generate a new code,
embedding the provided comments into its output. This iterative
process fosters a symbiotic relationship between automated pro-
gram analysis and advanced language modeling, facilitating the
generation of code that not only adheres to syntactic rules but also
aligns with best practices, security guidelines, and architectural
constraints.

In addition, we propose a novel framework, CodePatchLLM,
which integrates the Svace static analyzer [2, 16] feedback into
CodeLlama [36] to enhance the reliability and security of generated
code. Through a series of experiments and evaluations on Leetcode
dataset [13] we seek to demonstrate the effectiveness of our ap-
proach in improving code quality, reducing the risk of defects, and
ultimately enhancing the trustworthiness of software systems in
real-world applications.

To summarize, the major contributions of this paper are as fol-
lows:

e We introduce a novel approach that utilizes code-specific
feedback as the external source of knowledge in model in-
structions. The approach is independent of models architec-
ture and generates higher-quality codes.

e We develop the CodePatchLLM extension for CodeLlama
that applies the Svace static analyzer to the generated code,
and iteratively corrects the model’s prompt using all warn-
ings and errors detected by Svace;

e We demonstrate the effectiveness of CodePatchLLM through
experiments across diverse programming tasks (from the
Leetcode platform?) and program languages (Java, Python,
Kotlin). Using CodeLlama with CodePatchLLM improves the
compilation rate in 50% for Java and 10% for Kotlin more

Zhttps://leetcode.com

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://leetcode.com

CodePatchLLM: Configuring code generation using a static analyzer

cases and functional correctness over different languages by
5%.

The remainder of this paper is organized as follows. In Sec-
tion 2 we describe existing code generation models utilizing exter-
nal knowledge and structure-based approaches. Section 3 delves
into the specifics of our proposed approach and new CodePatchLLM
framework that includes the Svace static analyzer. The experimen-
tal evaluation of CodePatchLLM on programming tasks written in
three program languages (Java, Python, Kotlin) and the case study
can be found in Section 4. Finally, Section 5 concludes the paper.

2 RELATED WORK

2.1 Fine-tuning large language models for code
generation

Recently, LLMs have shown remarkable ability in understanding
natural language and code generation by training on large text
corpora containing code data. Several pre-trained language mod-
els (PLMs) demonstrate significant potential for code generation
including CodeGPT [30], PanGu-Coder [38], SantaCoder [3]. In
addition, supervised fine-tuning models achieve more competitive
performance such as CodeX [6], CodeLlama Instruct [36].

Reinforcement Learning is a method of learning the optimal pol-
icy by exploring the environment and obtaining rewards [48]. Re-
cently, some researchers have introduced RL to LLMs and improved
the quality of the generated code by utilizing the unit test feedback
to explore the output space of the policy model [8, 23, 28, 29, 40].
For instance, Coberly [23] leverages signal from unit tests as re-
wards and utilizes the actor-critic approach [19] to enhance models
on code generation. PPOCoder [40] refines Code by employing the
PPO algorithm [37] and RLTF [29] provides fine-grained rewards
through the error locations, but the reward space is still sparse.
However, the exploration of complex tasks in an environment char-
acterized by a sparse reward is challenging. These methods still fall
short of effectively using RL to enhance the model’s performance
in code generation [54].

2.2 Chain-of-thought prompting

With the recent advancements in large language models, researchers
have discovered that utilizing the chain-of-thought (CoT) [14, 46]
techniques can significantly improve reasoning abilities. Authors [46]
introduced the concept of few-shot CoT, which involves generating
intermediate reasoning steps before arriving at the final answer
with in-context demonstrations. This approach deviates from tra-
ditional few-shot prompting (also called in-context learning [5])
that directly generates the final answer. Zero-shot CoT [18] is
another method leveraging chain-of-thought which adding the
prompt “Let’s think step by step.” after the task description to acti-
vate LLMs to generate rationales in order for improved task perfor-
mance. Other researchers also propose various prompting methods
to enhance model capabilities, including auto-cot [52], least-to-
more [53], decomposing prompting [17] and tree-of-thought [49].
In our work, outputs of program analysis tools can be seen as kind
of prompt chaining, since all this data serves as intermediate steps
for fixing bugs in the code.

GenAl Evaluation KDD2024, August 26, 2024, Barcelona, Spain

2.3 Prompting with feedback

Despite the remarkable capabilities of large language models, it
can still be challenging sometimes to generate the correct answer
in a single attempt. Recently, people found that LLMs can receive
feedback from external environment or generated by themselves
and iteratively refine according to the feedback. Self-refine [31]
launches a novel approach that allows LLMs to iteratively refine
outputs with the feedback without any labeled data. Reflexion [39]
proposes a “verbal reinforcement learning” that LLMs reflect on
failures based on feedback and store reflexion in a text style for
future trials. REMEMBERER [50] employs a method that allows
LLMs to learn experience which is stored in an external memory
from the feedback in the training set and transfer that experience
to the test set for a better performance. In our work, we focus on
code generation task and teach LLMs to improve code based on
feedback from program analysis tools such as a static analyzer.

2.4 Prompting for code

Prompting techniques have been extensively utilized in tasks re-
lated to code. Some works including [24-26] focus on leveraging
prompting to enhance code generation. In [51] prompting is used
to facilitate code selection and develop a reviewer model. We focus
on using program analysis tools to improve the compilability and
security of the code without losing the effectiveness of solving the
problem. We use a message from the compiler and static analyzer
as a signal for the model.

3 METHOD

In this section, we focus on the methodological details of our ap-
proach, which ensures the generation of a compiled program and a
program tested by a static analyzer, respectively, as shown in Fig. 1.
And we describe CodePatchLLM, a novel framework that uses
Svace [2, 16] feedback for correcting prompt for CodeLlama [36],
illustrated in Fig. 3.

3.1 Comparing prompting and fine-tuning
approaches for code generation tasks

We aim to dissect several key aspects underlying the efficacy of
prompting as a methodology over traditional fine-tuning practices.
We begin by examining insights gleaned from empirical studies [17,
25, 46].

Better understanding. Consistent improvement of parts of
the generated code can facilitate better understanding, error cor-
rection, and optimization, ultimately leading to improved overall
performance of the LLM [25].

Activating specific internal knowledge. Using prompting
activates specific internal knowledge.

In the single step approach, the LLM is constrained to solve the
entire problem in a single step. Therefore, the maximum number
of tokens it can process is limited by s. In the n intermediary steps
approach, the LLM solves the problem in multiple steps, with each
step handling a portion of the task. Since the LLM can process
tokens in each of the n intermediary steps, the total number of
tokens processed across all steps is s + n X m.

Comparing the two approaches, we can see that the n intermedi-
ary steps approach allows the LLM to process a total of s + n X m

GenAl Evaluation KDD2024, August 26, 2024, Barcelona, Spain

tokens, which is significantly higher than the token processing
capacity of s in the single step approach.

Independence from the model architecture and software
tools. Fine-tuning a model with specific static analyzer can lead to
overfitting, where the model performs well on errors and warnings
that can only be detected by this static analyzer but poorly on
unseen data.

Moreover, fine-tuning can sometimes lead to a loss of general-
ization ability, meaning the model becomes too specialized for the
specific task it was fine-tuned for and performs poorly on related
tasks or in different environments.

The transferability of a fine-tuned model to different tasks or
domains may be limited. While fine-tuning may improve perfor-
mance on a particular task, it might not transfer well to other tasks
without further adjustments or retraining.

Customizing without computational cost. Fine-tuning can
be computationally expensive, especially if the pre-trained model
is large and the fine-tuning dataset is extensive. This can require
significant computational resources and time, making fine-tuning
less practical in some scenarios [47].

Previous works [8, 45] by fine-tuning a model based on compiler
feedback shows that a reward or binary signal is usually returned
as feedback, the context itself does not change. Thus, fine-tuning
the model requires a lot of resources, since the model has to explore
all the output spaces in order to find the best combination that will
lead to a rare reward, program compilability.

External signals do not detract the model from solving the
problem. If the previous code snippet is compilable, the generator
can fool the compiler easily. The RL is good at making use of this,
resulting in the generated code can be compiled, but seriously
deviating from the generation likelihood objective.

Previous works [8, 29] to avoid active model being too far away
from reference model added a Kullback-Leibler [54] penalty with
expectation. To alleviate the imbalance between the reward term
and the penalty term and improve the stability of training, authors
in [34] used autoregressive fine-tuning. This general setup leads
to the fact that the original model corrects only a small number of
tokens at the input, which in turn may not be optimal for quickly
improving the compilability and security of the code, since the
entire solution architecture has to be changed.

Based on this, we propose a simple and convenient framework
CodePatchLLM to extend CodeLlama [36] capabilities for code gen-
eration through feedback from Svace [16]. The flexible configuration
of the framework allows to use any architecture of the LM with
CodePatchLLM that solves the task. The authors believe that frame-
works like CodePatchLLM can be used as add-ons on an arbitrary
code generation model. And can be used when the specification
requirement is higher than under normal conditions.

3.2 CodePatchLLM

Our proposed method CodePatchLLM enables large language mod-
els to use the code debugging method through a static analyzer. The
CodePatchLLM can be used in cases where the requirements for
the generated code are much higher than in normal conditions: the
code must be vulnerability-tested and executable. It involves testing
generated code through the Svace static analyzer. Programmers can

Shaikhelislamov et al.

analyze the output generated by the dialogue of LLM and Svace to
understand how the code has been changed and what errors were
in the first version.

Figure 3 shows an example of the first iteration using CodePatch-
LLM on the program generation task. We first let LLMs attempt
solving the programming problem based solely on the problem
description, without any extra information. The generated code,
regardless of its size, is checked by the Svace static analyzer (Stage
SAFe) and code regeneration based on feedback from program anal-
ysis tools (Stage Asssist Setting). The above steps will be repeated
until Svace finds errors and vulnerabilities in the code or until
several rounds of debugging attempts still fail to fix the issues.

We will now provide a detailed discussion of each step:

Generating code. For code generation we use Code Llama 70B
Instruct?, the largest and best-performing open-source model. We
use a typical usage prompt for many models [14]: You are a help-
ful and honest code assistant expert in {LANGUAGE}. Please, pro-
vide all answers to programming questions in {LANGUAGE}. where
{LANGUAGE} denotes the selected programming language. When
communicating with the model, we use the following chat prompt
format:

chat = [
{"role": "system", "content": "System prompt 3,
§{"role": "user", "content" First user query"},
i"role": stant" 1tent": "Model response to first query"},
{"role": "user", "content": "Second user query"},

Figure 2: Chat Prompt for CodeLlama-70B-Instruct. Source:
https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf

SAFe stage In this stage, we proceed with code analysis that
includes the running the Svace static analyzer. Following the Svace
user manual, we initialize the directory in which the program file
is located with the command: svace init. We capture any error
messages provided by the Svace or the original compiler. It is im-
portant to note that even if the execution encounters errors, we
still collect the log generated prior to the occurrence of the error.
For instance, before running the analysis, Svace needs to build in-
termediate representation generated when monitoring the original
compilation process (e.g. via the javac compiler for Java). And if
an error occurs at the compilation stage, we collect the event and
message in the log.

In our research, we use Svace as a base component for code
analysis and optimization. Svace identifies security vulnerabili-
ties inherent in software code, including potential buffer overflows,
memory leaks, and other unsafe coding practices. By proactively de-
tecting these vulnerabilities at an early stage of development, Svace
empowers users to mitigate security risks effectively, safeguard-
ing software systems from potential cyber threats and breaches.
Additionally, Svace facilitates the identification of performance
bottlenecks within the codebase, such as inefficient algorithms,
redundant computations, or memory-intensive operations.

3Codellama-70B is free for research: https://ai.meta.com/blog/code-llama-large-
language-model-coding/

https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://ai.meta.com/blog/code-llama-large-language-model-coding/

CodePatchLLM: Configuring code generation using a static analyzer

It is assumed that the module SAFe can be flexibly expanded
with other code analysis tools, for example, a dynamic analyzer.

Given an array of integers nums sorted in non-decreasing order, find the starting and ending position of a
given target value.

If target is not found in the array, return [-1, -1].
You must write an algorithm with 0(log n) runtime complexity.

public int[] searchRange(int[] nums, int target) {
int left = @;
int right = nums.length - 1;
while (left <= right) {
int mid = (left + right) / 2;
if (numsImid] == target) {
// Found the target, now find the starting and ending positions
int start = mid;
while (start >= @ & nums[start] == target) {
start—;
¥
int end = mid;
while (end < nums.length && nums[end] == target) {
end++;

CodelLama

3}
return new int[] {start + 1, end - 1};
} else if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid - 1;
+
}
// Target not found
return new int[] {-1, -1};

}

Correct program with feedback:
error: class, interface, or enum expected
public int[] searchRange(int[] nums, int target) {

Q{&

In Line 6: Computation of average could overflow in Solution.searchRange(int[],
int)

public class Solution {
public int[] searchRange(int[] nums, int target) {
int left = @;
int right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
// Found the target, now find the starting and ending positions
int start = mid;
while (start >= 0 & nums[start] == target) {
start—;
b
int end = mid;
while (end < nums.length && nums[end] == target) {
end++;

CodeLama }

return new int[] {start + 1, end - 1};
} else if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid - 1;
+
}
// Target not found
return new int[] {-1, -1};

Fo)

Figure 3: An illustration of Java program generation with
CodePatchLLM, utilizing the Svace feedback.

Assist settings In the final step, we provide error messages
to the model turning all feedback into a sequence. Our approach
aims to take into account all feedback and instructions provided by
program analysis tools. This means that at each timestep, the model

GenAl Evaluation KDD2024, August 26, 2024, Barcelona, Spain

can only utilize the past time steps data and itself. We instruct
LLMs to regenerate the code considering the comments found, as
illustrated in Figure 3. LLMs are prompted to fix an error in the
code in a specific place (the line number and the method used are
known). In the Figure 3 two messages generated by the SAFe module
are specified: a class declaration is expected for the compilation
of the program and the calculation of the average value may be
overflowed.

4 EXPERIMENTS

We evaluate our CodePatchLLM framework with CodeLlama [36]
as backbone. We investigate (1) how CodePatchLLM framework
can boost LLMs’ performance on real-world programming tasks
benchmarks; (2) the impact of the framework on code compilability
and the reduction of defects; and (3) the effect of the number of
iterations.

Benchmark. We consider Leetcode datasets [13] for our evalua-
tions. LeetCode* is one of the most visited platform for practicing
programming. We selected LeetCode as the primary source for our
evaluation dataset, as it programming tasks can be directly com-
piled by copying and pasting contents from the LeetCode website. A
dataset consists of 2 612 programming tasks. Problems in the dataset
are categorized into three levels according to their difficulties.

Metrics. To evaluate the generated codes, we employ the pass@1
metric following [6], which calculates the percentage of problems
for which all unit tests are passed using 1 synthetically generated
program sample per problem.

Implementation details. The experiment process was con-
ducted on a device with three NVIDIA A100 80G GPUs.

The weights of the model are loaded from HuggingFace. The
maximum output token length is set to 2048.

At each step of the code update, we submit the solution to the
platform Leetcode. And also at each stage reinitialize existing Svace
project directory from scratch.

4.1 Experimental results on Leetcode

In our study, we evaluate CodePatchLLM with Java, Python, and
Kotlin lanuages.

The experimental results are illustrated in Table 1. The reported
results indicate that the model with CodePatchLLM improve per-
formance the model with basic settings for Java and Kotlin. And
experiment shows that in Python the extended model does not
improve the quality. Mechanism feedback from Svace and origi-
nal compiler designed to executable and feasibility of the program.
Therefore, in part, the extension does not change the overall quality,
since a Python program does not require a compiler. The lack of
feedback from the compiler and the analyzer explains the minimal
deviations of the results from the original model. Experimental
results show that CodePatchLLM improves executability by 45% for
Java and by 10% for Kotlin. Additionally, it enhances the "Accepted”
rate by 50% for Java.

In Table 1, the percentage of wrong answers and runtime errors
increased after applying CodePatchLLM for the Java and Kotlin
languages. Specifically, wrong answers increased from 22% to 37%
for Java and from 2% to 10% for Kotlin. This is due to the distribution

*https://leetcode.com

https://leetcode.com

GenAl Evaluation KDD2024, August 26, 2024, Barcelona, Spain

Shaikhelislamov et al.

Table 1: Performance results. Overall, CodePatchLLM boosts the performance and compilability of CodeLlama on the

discussed metric.

Accepted Wrong Runtime Compiler
Answer Error Error
Java CodeLlama([36] 12% 22% 3% 62%
CodeLlama + CodePatchLLM (Our) 25% 37% 5% 33%
Python CodeLlama([36] 36% 47% 17% 0%
CodeLlama + CodePatchLLM (Our) same result
Kotlin CodeLlama[36] 10% 2% 24% 64%
CodeLlama + CodePatchLLM (Our) 12% 10% 24% 54%

of compiler error cases among other cases. In particular, some of
the tasks became compiled, but had wrong answer.

In 37.3% of cases, CodeLlama incorrectly names the implemented
class method at the first request. For example, swapAdjacentNodes
instead swapPairs. It is noteworthy that further dialogue with the
model allows you to correct this although in the task formulation
there are no clarifications in the naming of methods and classes.

Since CodePatchLLM constrains the model on an example when
predicting another one, the model can simply “copy” the example
without learning to understand the underlying task. In future, to
address this, we can randomly mask between 0% and 5% of past
tokens during training, which help regularize the model and prevent
it from overfitting to the specific examples seen during training [28,
41].

The Table 2 presents the percentage of generated programs with
errors and vulnerabilities, categorized based on the type of feed-
back received from the original compiler and Svace static analyzer.
the majority of the feedback (98%) has been addressed by Code-
PatchLLM, indicating its effectiveness in correcting errors. In Java,
12.5% of the generated programs had Svace feedback indicating
vulnerabilities, while for Kotlin, this percentage was lower at 3.1%.
No errors were detected in the generated Python programs, likely
due to the Python support in Svace being in the first release, so
that not many Svace checkers are supported for Python. It is worth
noting that the analyzer verification stage comes after the com-
piler verification, and Svace identifies errors that do not influence
whether the program can be successfully built, as all programs
being analyzed are already compiled correctly. But the errors found
can affect functional correctness.

Table 2: The percentage of generated programs with errors
and vulnerabilities. 98% of the reviews have been corrected
by CodePatchLLM.

Compiler Svace
feedback feedback
Java 62,3% 12,5%
Python — 0%
Kotlin 64,5% 3,1%

Our approach allows to create a ready-made extension that can
be used in conjunction with any LLM to generate code. Experi-
ments with CodePatchLLM demonstrate that the method of using

feedback from the original compiler and static analyzer improves
compilability and prevents errors for Kotlin and Java programs.

5 CONCLUSION

In this paper, we introduce CodePatchLLM, a novel framework
that leverages feedback from compilers and static analyzers to
correct prompts. We identified some limitations of fine-tuning LLM
for code generation tasks and designed a new framework that is
geared towards program languages as opposed to natural language.
We incorporated compiler and static analyzer’s feedback into our
framework to encourage the model to generate more syntactically
and logically correct codes. Results of our experiments show the
effectiveness of our method compared to the basic model without
CodePatchLLM in improving the syntactic / functional correctness
of the generated codes. It is important to understand that one of
the limitations of CodePatchLLM is the additional time spent on
data exchange, which can increase computational requirements.
However, CodePatchLLM is primarily motivated by its ability to
enhance the performance of pre-trained models which is a more
cost-effective strategy than fine-tuning ones to specific task.

By addressing the critical need for trustworthy code generation,
this research has the potential to contribute to the development of
more reliable and secure software systems.

REFERENCES

[1] Dmitry Abulkhanov, Nikita Sorokin, Sergey Nikolenko, and Valentin Malykh.
2023. Lapca: Language-agnostic pretraining with cross-lingual alignment. In
Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2098-2102.

Andrey Belevantsev, Alexey Borodin, Irina Dudina, Valery Ignatiev, Alexey Izby-

shev, Sergey Polyakov, Evgeny Velesevich, and Dmitry Zhurikhin. 2018. Design

and Development of Svace Static Analyzers. In 2018 Ivannikov Memorial Workshop

(IVMEM). 3-9. https://doi.org/10.1109/IVMEM.2018.00008

[3] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher
Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu,
Manan Dey, et al. 2023. SantaCoder: don’t reach for the stars! arXiv e-prints
(2023), arXiv-2301.

[4] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2003. A static
analyzer for large safety-critical software. In Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and implementation. 196-207.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

—_
&,

https://doi.org/10.1109/IVMEM.2018.00008

CodePatchLLM: Configuring code generation using a static analyzer

(71

&=

=

[10]

(11

[12

[13]

[14

[15]

[16]

[17

(18]

[19

[20]

[21

[22

[23]

[24]

[25

[26]

[27

[28

[29]

[30

[31]

Fenia Christopoulou, Gerasimos Lampouras, Milan Gritta, Guchun Zhang, Yin-
peng Guo, Zhonggqi Li, Qi Zhang, Meng Xiao, Bo Shen, Lin Li, et al. 2022. Pangu-
coder: Program synthesis with function-level language modeling. arXiv preprint
arXiv:2207.11280 (2022).

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Junjie Shan,
Caishuang Huang, Wei Shen, Xiaoran Fan, Zhiheng Xi, et al. 2024. StepCoder:
Improve Code Generation with Reinforcement Learning from Compiler Feedback.
arXiv preprint arXiv:2402.01391 (2024).

Michael Felderer, Matthias Biichler, Martin Johns, Achim D Brucker, Ruth Breu,
and Alexander Pretschner. 2016. Security testing: A survey. In Advances in
Computers. Vol. 101. Elsevier, 1-51.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.
Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1-119.
Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng,
Peng Liu, and Zhen Wang. 2023. Exploration in deep reinforcement learning:
From single-agent to multiagent domain. IEEE Transactions on Neural Networks
and Learning Systems (2023).

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. 2021. Mea-
suring coding challenge competence with apps. arXiv preprint arXiv:2105.09938
(2021).

Wenpin Hou and Zhicheng Ji. 2024. A systematic evaluation of large language
models for generating programming code. arXiv preprint arXiv:2403.00894 (2024).
Xueyu Hu, Kun Kuang, Jiankai Sun, Hongxia Yang, and Fei Wu. 2024. Leveraging
print debugging to improve code generation in large language models. arXiv
preprint arXiv:2401.05319 (2024).

Declan Humphreys, Abigail Koay, Dennis Desmond, and Erica Mealy. 2024. AI
hype as a cyber security risk: the moral responsibility of implementing generative
Al in business. Al and Ethics (2024), 1-14.

VP Ivannikov, AA Belevantsev, AE Borodin, VN Ignatiev, DM Zhurikhin, and AI
Avetisyan. 2014. Static analyzer Svace for finding defects in a source program
code. Programming and Computer Software 40 (2014), 265-275.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter
Clark, and Ashish Sabharwal. 2022. Decomposed prompting: A modular approach
for solving complex tasks. arXiv preprint arXiv:2210.02406 (2022).

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199-22213.

Vijay Konda and John Tsitsiklis. 1999. Actor-critic algorithms. Advances in neural
information processing systems 12 (1999).

Tomasz Korbak, Hady Elsahar, Marc Dymetman, and German Kruszewski. 2021.
Energy-based models for code generation under compilability constraints. arXiv
preprint arXiv:2106.04985 (2021).

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex
Aiken, and Percy S Liang. 2019. Spoc: Search-based pseudocode to code. Advances
in Neural Information Processing Systems 32 (2019).

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. 2022. Exploration
in deep reinforcement learning: A survey. Information Fusion 85 (2022), 1-22.
Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven
Chu Hong Hoi. 2022. Coderl: Mastering code generation through pretrained
models and deep reinforcement learning. Advances in Neural Information Pro-
cessing Systems 35 (2022), 21314-21328.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023. Enabling programming thinking in
large language models toward code generation. arXiv preprint arXiv:2305.06599
(2023).

Jierui Li, Szymon Tworkowski, Yingying Wu, and Raymond Mooney. 2023. Ex-
plaining competitive-level programming solutions using llms. arXiv preprint
arXiv:2307.05337 (2023).

Xin-Ye Li, Jiang-Tian Xue, Zheng Xie, and Ming Li. 2023. Think outside the code:
Brainstorming boosts large language models in code generation. arXiv preprint
arXiv:2305.10679 (2023).

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. 2022.
Competition-level code generation with alphacode. Science 378, 6624 (2022),
1092-1097.

Hao Liu, Xinyang Geng, Lisa Lee, Igor Mordatch, Sergey Levine, Sharan Narang,
and Pieter Abbeel. 2022. Towards Better Few-Shot and Finetuning Performance
with Forgetful Causal Language Models. arXiv preprint arXiv:2210.13432 (2022).
Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng
Ye. 2023. Rltf: Reinforcement learning from unit test feedback. arXiv preprint
arXiv:2307.04349 (2023).

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset for code understanding and
generation. arXiv preprint arXiv:2102.04664 (2021).

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al.
2024. Self-refine: Iterative refinement with self-feedback. Advances in Neural

[32

(33]

[34

(35]

[36

[37

[38

[39]

=
=

[41

[42

[43

[44

[45]

[46]

[48

[49

[50

[51

[54

GenAl Evaluation KDD2024, August 26, 2024, Barcelona, Spain

Information Processing Systems 36 (2024).

Yuanyuan Pan. 2019. Interactive application security testing. In 2019 International
Conference on Smart Grid and Electrical Automation (ICSGEA). IEEE, 558-561.
Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Retrieval augmented code generation and summarization.
arXiv preprint arXiv:2108.11601 (2021).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1,8 (2019), 9

Anton Razzhigaev, Mikhail Salnikov, Valentin Malykh, Pavel Braslavski, and
Alexander Panchenko. 2023. A system for answering simple questions in mul-
tiple languages. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 3: System Demonstrations). 524-537.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan
Zeng, Ailun Yu, Jichuan Ji, Jingyang Zhao, et al. 2023. Pangu-coder2: Boost-
ing large language models for code with ranking feedback. arXiv preprint
arXiv:2307.14936 (2023).

Noah Shinn, Beck Labash, and Ashwin Gopinath. 2023. Reflexion: an autonomous
agent with dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366
(2023).

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. 2023.
Execution-based code generation using deep reinforcement learning. arXiv
preprint arXiv:2301.13816 (2023).

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929-1958.
Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
Intellicode compose: Code generation using transformer. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1433-1443.

D Yu Turdakov, Arutyun Ishkhanovich Avetisyan, Konstantin Vladimirovich
Arkhipenko, Anastasiya Vsevolodovna Antsiferova, Dmitry Sergeevich Vatolin,
SS Volkov, Alexander Vladimirovich Gasnikov, Dmitry Alekseevich Devyatkin,
MD Drobyshevsky, AP Kovalenko, et al. 2022. Trusted artificial intelligence:
challenges and promising solutions. In Doklady Mathematics, Vol. 106. Springer,
59-S13.

James Vincent. 2023. Stack Overflow survey finds developers are ready
to use Al tools — even if they don’t fully trust them. VOX ME-
DIA (2023). https://www.theverge.com/2023/6/13/23759101/stack-overflow-
developers-survey-ai-coding-tools-moderators- strike

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li, Pingyi Zhou, Jin Liu,
Hao Wu, Xin Jiang, and Qun Liu. 2022. Compilable neural code generation with
compiler feedback. arXiv preprint arXiv:2203.05132 (2022).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824-24837.

Marco A Wiering and Martijn Van Otterlo. 2012. Reinforcement learning. Adap-
tation, learning, and optimization 12, 3 (2012), 729.

Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8 (1992), 229-256.
Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. 2024. Tree of thoughts: Deliberate problem solving with
large language models. Advances in Neural Information Processing Systems 36
(2024).

Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu, Zihan Zhao, and Kai Yu.
2024. Large Language Models Are Semi-Parametric Reinforcement Learning
Agents. Advances in Neural Information Processing Systems 36 (2024).

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike Lewis, Wen-tau Yih, Daniel
Fried, and Sida Wang. 2023. Coder reviewer reranking for code generation. In
International Conference on Machine Learning. PMLR, 41832-41846.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. 2022. Automatic chain
of thought prompting in large language models. arXiv preprint arXiv:2210.03493
(2022).

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,
Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022. Least-to-
most prompting enables complex reasoning in large language models. arXiv
preprint arXiv:2205.10625 (2022).

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario
Amodei, Paul Christiano, and Geoffrey Irving. 2019. Fine-tuning language models
from human preferences. arXiv preprint arXiv:1909.08593 (2019).

https://www.theverge.com/2023/6/13/23759101/stack-overflow-developers-survey-ai-coding-tools-moderators-strike
https://www.theverge.com/2023/6/13/23759101/stack-overflow-developers-survey-ai-coding-tools-moderators-strike

	Abstract
	1 Introduction
	2 Related work
	2.1 Fine-tuning large language models for code generation
	2.2 Chain-of-thought prompting
	2.3 Prompting with feedback
	2.4 Prompting for code

	3 Method
	3.1 Comparing prompting and fine-tuning approaches for code generation tasks
	3.2 CodePatchLLM

	4 Experiments
	4.1 Experimental results on Leetcode

	5 Conclusion
	References

