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Abstract
Large Language Models (LLMs) have revolutionized natural lan-
guage processing, but their robustness against adversarial attacks
remains a critical concern. We presents a novel white-box style
attack approach that exposes vulnerabilities in leading open-source
LLMs, including Llama, OPT, and T5. We assess the impact of model
size, structure, and fine-tuning strategies on their resistance to
adversarial perturbations. Our comprehensive evaluation across
five diverse text classification tasks establishes a new benchmark
for LLM robustness. The findings of this study have far-reaching
implications for the reliable deployment of LLMs in real-world ap-
plications and contribute to the advancement of trustworthy AI
systems.
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1 Introduction
In recent years, the field of artificial intelligence has witnessed
a remarkable surge in the development and application of Large
Language Models (LLMs). These models, such as ChatGPT [23],
GPT-4 [22], and Llama-2 [29], have demonstrated exceptional per-
formance in various natural language understanding and generation
tasks [42]. The success of LLMs can be attributed to the innovative
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training techniques employed, including instruction tuning, prompt
tuning, Low-Rank Adaptor (LoRA) [6, 11]. These advances have
made it possible to fine-tune and infer models like Llama-2-7B on
consumer-level devices, thereby increasing their accessibility and
potential for integration into daily life.

However, despite their impressive capabilities, LLMs are not
without limitations. One significant challenge is their susceptibility
to variations in input types, which can lead to inconsistencies in
output and potentially undermine their reliability in real-world
applications. For example, when faced with ambiguous or provoca-
tive prompts, LLMs may generate inconsistent or inappropriate
responses. To address this issue, several studies have been con-
ducted to assess the robustness of LLM models [35, 44]. However,
these efforts often overlook the importance of re-fine-tuning the
models and conducting comprehensive studies of adversarial at-
tacks with known adversarial sample generation mechanisms when
full access to the model weights, architecture, and training pipeline
is available [10, 30].

In this paper, we present an extensive study of three leading open-
source LLMs: Llama, OPT, and T5. We evaluate the robustness of
various sizes of these models across five distinct NLP classification
datasets. To assess their vulnerability to input perturbations, we
employ the adversarial geometry attack technique and measure the
impact on model accuracy. Furthermore, we investigate the effec-
tiveness of commonly used methods in LLM training, such as LoRA,
different precision levels, and variations in model architecture and
tuning approaches.

Our work makes several notable contributions to the field of
LLM evaluation and robustness:

(1) We introduce a novel white-box style attack approach that
leverages output logits and gradients to expose potential
vulnerabilities and assess the robustness of LLMs.

(2) We establish a benchmark for evaluating the robustness of
LLMs by focusing on their training strategies, setting the
stage for future research in this domain.

(3) Our comprehensive evaluation spans five text classification
tasks, providing a broad perspective on the capabilities and
limitations of the models across diverse applications.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 Related Work
2.1 The Evaluation of LLMs
In recent years, the LLM domain has experienced significant ad-
vances [5, 36]. A large number of exemplary large-scale models
such as GPT-4, have emerged, showcasing exceptional performance
across various sectors.

Given the remarkable capabilities and broad applications of these
models, evaluating their performance has become paramount. Con-
sequently, a significant portion of the research is dedicated to NLP
tasks. For instance, [35] examines ChatGPT’s performance in senti-
ment analysis, while [40] offers a comparative analysis with other
LLMs. Numerous studies have explored the capabilities of LLM
in natural language understanding, including text classification as
highlighted by [15], and inference as demonstrated by [25]. Ad-
ditionally, extensive research has been conducted to assess LLMs
in generation tasks, encompassing areas such as translation [34],
question answering [3, 15], and summarization [4].

Due to the impressive performance of LLMs, there has been wide-
spread attention to their safety and stability. [33] conducted an early
investigation into ChatGPT and other LLMs and utilized existing
benchmarks like AdvGLUE [32], ANLI [21], and DDXPlus [28] for
their evaluations. [43] assessed the performance of LLMs in visual
inputs and their transferability to other visual-language models. On
the topic of adversarial robustness, [31] introduced the AdvGLUE++
benchmark and proposed an approach to examine machine ethics
through system prompts. [44] proposed a unified benchmark named
PromptBench to evaluate the resilience of LLMs against prompts.

However, a significant limitation of the aforementioned studies
on robustness is that they focus only on inference-based evalua-
tions. They largely overlook the intricacies of the model’s weights
and output logits. Furthermore, these studies do not discuss the per-
formance of various LLM techniques. In contrast, in our research,
we not only conduct attacks based on the model’s parameters and
logits, but also actively participate in the model’s tuning. Addition-
ally, we place a special emphasis on studying the model size and
specific techniques used in LLMs, aspects that previous works have
not addressed.

2.2 Robustness in NLP
With the rapid advancement in NLP research, its applications have
become increasingly prevalent. This ubiquity underscores the grow-
ing need for reliable NLP systems that can effectively counteract
malign content and misinformation. A seminal work [12] high-
lighted the vulnerabilities of NLP systems to adversarial attacks.

There are some works about various input perturbations, which
could be categorized into three groups: character level, word level,
and sentence level [13, 16, 37]. At the character level, adversarial at-
tacks focus on altering individual characters within a given text. [9]
introduced HotFlip, utilizing gradient information to manipulate
characters within text. [14] took a different approach by identifying
words and modifying their characters. At the word level, adversarial
strategies revolve around replacing specific words within the con-
tent. For instance, [1] employs evolutionary algorithms to swap out
words with their synonyms. [38] utilized probabilistic sampling to
generate adversarial examples. Furthermore, some researchers have
explored adversarial tactics at the sentence level. [12] suggested

a method that introduces an extraneous sentence to the primary
content, aiming to mislead reading models. On the other hand, [24]
adopted a new approach, where they employed an encoder-decoder
framework to rephrase entire sentences. Recently, [31] evaluated
the robustness and trustworthiness of GPT-3.5 and GPT-4 models,
revealing vulnerabilities such as the ease of generating toxic and
biased outputs and leaking private information. Despite GPT-4’s im-
proved performance on standard benchmarks, it is more susceptible
to adversarial prompts, highlighting the need for rigorous trust-
worthiness guarantees and robust safeguards against new adaptive
attacks.

However, the landscape of NLP research is ever-evolving. With
the introduction of more sophisticated models boasting novel ar-
chitectures and training methodologies, there is an growing need
to assess the robustness of these newer models. This is especially
true for LLMs, which present unique challenges and opportunities
in the realm of robustness research.

3 Preliminaries
3.1 Open-source Large Language Models
We evaluate the following open-source large language models used
in our experiments, as shown in Table 1.

T5 The Text-to-Text Transfer Transformer (T5) developed by
Google Research redefines natural language processing (NLP)
tasks by treating them uniformly as text-to-text conver-
sions [26].

OPT Open Pretrained Transformers (OPT) range from 125M to
175B parameters and are decoder-only models [39]. These
models are trained on a diverse pre-training corpus.

Llama Meta AI’s Llama is a series of models ranging from 7B to 65B
parameters. Llama is trained on a corpus comprising trillions
of tokens from publicly available datasets.

Table 1: The open-source large language models in our study

3.2 Fine-tuning Techniques
We apply the following fine-tuning techniques in our study.

LoRA. LoRA innovates in fine-tuning pretrained language mod-
els for specific tasks, addressing the inefficiency of full fine-tuning
in increasingly large models. By inserting trainable rank decom-
position matrices into each layer and freezing the original model
weights, LoRA significantly reduces the number of parameters re-
quiring training.

Quantization. Quantization in large language models (LLMs)
reduces the model size by lowering weight precision, with 8-bit
precision presenting challenges due to errors from quantizing large-
value vectors. These errors are pronounced in transformer archi-
tectures, requiring mixed-precision decomposition. This involves
identifying outliers using a threshold, processing them in fp16, and
quantizing the rest of the matrix at 8-bit precision. The two parts are
then combined. The approach, exemplified by LLM.int8(), aims to
make large models more accessible, trading off some performance
for significant size reduction.
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QLoRA. Quantized Low-Rank Adapters (QLoRA) [7] introduce
an efficient technique to fine-tune large language models by sig-
nificantly lowering memory requirements. QLoRA combines 4-bit
quantization with Low-Rank Adapters, freezing the parameters of
a compressed pretrained language model.

4 Methods
4.1 Adversarial Attack
In this study, our primary concern is text classification. Following
thework by [18], we consider a sample sentence 𝑆𝑖 = {𝑤1,𝑤2, . . . ,𝑤𝐿}
containing 𝐿 words, and its corresponding category label is 𝑦𝑖 . Our
textual classification system is built upon 𝑛 LLMs, represented as
𝑓 (·), coupled with a prompt indicating the categorization task, de-
noted as 𝑃𝑖 . In a formal sense: 𝑦𝑖 = 𝑓 (𝑆𝑖 ; 𝑃𝑖 ), where 𝑦𝑖 stands for
the given answer. The prediction is accurate when 𝑦𝑖 equals 𝑦𝑖 .

An adversarial attack based on word replacement processes the
original sample 𝑆𝑖 to produce an adversarial version 𝑆𝑎𝑑𝑣

𝑖
by re-

placing the 𝑘-th word 𝑤𝑘 in 𝑆𝑖 with an alternative word 𝑤𝑎𝑑𝑣𝑘 .
To ensure that the original sample 𝑆𝑖 and its adversarial counter-
part 𝑆𝑎𝑑𝑣

𝑖
maintain semantic similarity, prevalent methodologies

typically employ synonymous terms for replacements.

4.2 Geometry Attack Methodology
In our research, we extend the basic principles of adversarial at-
tacks in the context of LLMs. Our focus is on exploiting geometric
attacks [18, 19] to assess the vulnerability of LLMs to adversarial
perturbations. We propose a systematic methodology grounded in
geometric attack insights. The following sections detail the steps
of our approach:

1) Gradient Computation for Influence Analysis: We com-
mence by calculating the gradients of the generation loss L𝑖 with
respect to the embeddings 𝑒𝑖 of input sentence S𝑖 . The cross entropy
loss L𝑖 measures the dissimilarity between the prediction and label
examples in the output space. This computation is essential for all
words, including those segmented into sub-tokens. For such words,
gradients are computed for each sub-token and subsequently av-
eraged. This initial step is crucial for identifying the words that
exert significant influence on L𝑖 . We determine the gradient of L𝑖

with respect to the embedding vector 𝑒𝑖 . This step determines the
direction in which 𝑒𝑖 should be adjusted to maximize the increase in
the loss L𝑖 . The resulting gradient vector is denoted as 𝑣𝑒𝑖 = ∇𝑒𝑖L𝑖 .

2) Selection of Candidate Words: Suppose we select a tar-
get word 𝑤𝑡 from step 1. Utilizing the DeepFool algorithm [20],
we identify potential replacement words, forming a candidate set
{𝑤𝑡1 ,𝑤𝑡2 , . . . ,𝑤𝑡𝑇 }. Candidates are filtered based on their cosine
similarity to𝑤𝑡 , with those below a defined threshold 𝜖 being ex-
cluded. This process ensures that only semantically similar and
relevant candidates are considered.

3) Optimal Word Replacement and Projection Analysis:
After replacing𝑤𝑡 with each candidate word, we compute the new
text vectors {𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑇 }. For each vector, we define the delta
vector 𝑟𝑖 𝑗 as 𝑒𝑖 𝑗 − 𝑒𝑖 . The projection of 𝑟𝑖 𝑗 onto 𝑣𝑒𝑖 is calculated as
𝑝𝑖 = 𝑟𝑖 𝑗 · 𝑣𝑒𝑖 . The optimal replacement candidate 𝑤𝑡𝑚 is selected

based on criterion𝑚 = argmax𝑗
|𝑝𝑖 𝑗 |
| |𝑣𝑒𝑖 | |

. This ensures that the cho-
sen word𝑤𝑡𝑚 induces the largest possible projection 𝑝𝑖𝑚 onto the
gradient vector 𝑣𝑒𝑖 .

4) Iterative Process for Enhanced Adversarial Strength: The
selected word𝑤𝑡𝑚 replaces𝑤𝑡 in 𝑆𝑖 , updating 𝑒𝑖 to 𝑒𝑖𝑚 . This itera-
tive procedure is repeated for 𝑁 cycles, where 𝑁 is an adjustable
parameter in our methodology. Throughout these iterations, an
increase in L𝑖 should be observed, indicating a continuous en-
hancement in the adversarial effectiveness of the altered input.

Through this methodically structured process, our research aims
to uncover and analyze potential vulnerabilities in LLMs.We refined
ourmethodology to enable prompt fine-tuning for attack generation
tasks, expanding its application beyond the previously limited scope
of classification tasks.

5 Experiment Settings
5.1 Experiment Pipeline
This section introduces our methodology for evaluating the robust-
ness of pre-trained LLMs against adversarial attacks. The procedure
comprises three principal stages:
1) Model Fine-Tuning: We fine-tune a pre-trained language model
on target dataset with different fine-tuning techniques as described
in Sec. 3.2, evaluating its accuracy on the corresponding validation
set to establish a performance baseline.
2) Adversarial Attack Assessment: The fine-tuned model under-
goes adversarial attacks described in Sec. 4.2, and its performance
is assessed on a test dataset altered with adversarial examples.
3) Robustness Evaluation: We compare the model’s accuracy
before and after the adversarial attacks to assess its robustness and
vulnerability to such manipulations.

5.2 Datasets
To evaluate the model’s performance under various tasks and its
resilience to attacks, we employed five classification datasets, cate-
gorized into binary and multi-class classifications. For binary classi-
fication, the datasets include IMDB [17], MRPC [8], and SST-2 [27],
and for multiclass classification, AGNews [41] and DBpedia [2]
are used. We will provide a more detailed introduction to these
tasks/datasets in Appendix A.2

5.3 Evaluation Metrics
We assess our model’s robustness and efficacy using four principal
metrics, as described in Table 2.

6 Experimental Results
In this section, we conduct extensive experiments to evaluate the ro-
bustness of LLMs across five different datasets. These investigations
are guided by three key research questions (RQ):
RQ1: How does the robustness of variously sized models differ
under adversarial attacks across distinct tasks?
RQ2: Do contemporary training techniques for LLMs influence
their performance and robustness?
RQ3: How does the model architecture (e.g., fine-tuning with a
classification head vs. prompt tuning), affect the robustness of the
model?
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Target Dataset

Large Language
Model

Large Language
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Original Sample
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Execute 
Word Substitution Adversarial Sample

Original Sample

PEFT

Parameter-Efficient Fine-Tuning (PEFT) Frozen Input Data Adversarial Sample Generation

Evaluation

Figure 1: The framework of our adversarial robustness assessment

Metrics Description

Acc Accuracy: the model’s correct classification rate of un-
touched input

Acc/attack Accuracy Under Attack: post-attack classification accu-
racy revealing adversarial defense

ASR Attack Success Rate: the frequency of accurate predic-
tions turned false by attacks

ReplacementReplacement Rate: the extent of input alteration needed
to change the model’s prediction, indicating sensitivity
to perturbations

Table 2: The evaluation metrics

6.1 Model Size (RQ1)
In this section, we analyze the performance metrics of various mod-
els across multiple tasks. The datasets under examination include
IMDB, SST-2, MRPC, AGNews, and DBPedia. We measure the per-
formance and robustness of LLMs with the metrics Acc, Acc/attack,
ASR, and Replacement Rate described in Table 2.

The results from the IMDB dataset in Table 3 reveal distinct
performance variations among different model architectures. In the
T5 Series, accuracy generally improves with increasing model size,
from 60m to 11b parameters, but the relationship is nonlinear. This
suggests that while larger models tend to be more accurate, the
accuracy does not increase uniformly with model size. Furthermore,
the resilience of these models to adversarial attacks does not follow
a simple inverse relationship with model size. The larger T5-11b
model shows a more noticeable decrease in accuracy under attack
conditions.

For the OPT models, a similar upward trend in accuracy is ob-
served with increasing model size, but the Attack Success Rate

(ASR) is lower, suggesting better resistance to attacks. In compari-
son, the Llama models demonstrate superior performance in both
accuracy and robustness against attacks.

Acc Acc/attack ↑ ASR ↓ Replacement
T5-60m 0.8484 0.1256 0.8491 0.0929
T5-220m 0.8011 0.0436 0.9463 0.0722
T5-770m 0.9048 0.1536 0.8312 0.1143
T5-3b 0.9146 0.3259 0.6436 0.1413
T5-11b 0.9122 0.3098 0.6604 0.1330

OPT-125m 0.8616 0.6637 0.2297 0.0365
OPT-350m 0.8564 0.6924 0.1915 0.0305
OPT-1.3b 0.9231 0.7515 0.1859 0.0421
OPT–2.7b 0.9198 0.7651 0.1682 0.0396
OPT-6.7b 0.9408 0.7864 0.1641 0.0528
OPT-13b 0.9431 0.8016 0.1500 0.0671
Llama-7b 0.9483 0.8203 0.1350 0.0816
Llama-13b 0.9472 0.8237 0.1304 0.0875

Table 3: IMDB Dataset Results

From Table 4 on the SST-2 dataset, there are distinct performance
trends. The T5-11b, achieves the highest accuracy of 0.9656. How-
ever, its persistence to adversarial attacks is not highest. Notably,
the highest ASR within the T5 series is recorded for the T5-770m
model, indicating a trade-off as model size increases. In the case of
the OPT series, the OPT-6.7b model stands out. However, similar
to the IMDB dataset, this model also shows a significant decline in
accuracy but more robust than T5 models. One more observation
in the OPT series is the overall decrease in ASR with increasing
model size, but this trend is disrupted at the 13b parameter mark,
where an anomalous increase in ASR is observed. The Llamamodels,
demonstrate consistently high accuracy. It also presents lower ASR
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Acc Acc/attack ↑ ASR ↓ Replacement
T5-60m 0.9083 0.2419 0.7304 0.1428
T5-220m 0.8884 0.1228 0.8622 0.1611
T5-770m 0.8739 0.0534 0.9395 0.1785
T5-3b 0.9495 0.1563 0.8437 0.1987
T5-11b 0.9656 0.2248 0.7672 0.2043

OPT-125m 0.8807 0.7409 0.1587 0.0607
OPT-350m 0.9011 0.7716 0.1437 0.0598
OPT-1.3b 0.9443 0.8227 0.1288 0.0733
OPT–2.7b 0.8897 0.7921 0.1097 0.0476
OPT-6.7b 0.9693 0.8682 0.1043 0.0550
OPT-13b 0.9656 0.7867 0.1853 0.0719
Llama-7b 0.9683 0.8203 0.1528 0.0916
Llama-13b 0.9632 0.8124 0.1566 0.0877

Table 4: SST-2 Dataset Results

Acc Acc/attack ↑ ASR ↓ Replacement
T5-60m 0.8048 0.0325 0.9594 0.0720
T5-220m 0.8035 0.0633 0.9203 0.1100
T5-770m 0.8924 0.1992 0.7771 0.1203
T5-3b 0.8584 0.1074 0.8739 0.0917
T5-11b 0.8877 0.0712 0.9196 0.0873

OPT-125m 0.8321 0.6504 0.2184 0.0332
OPT-350m 0.8956 0.6741 0.2473 0.0437
OPT-1.3b 0.9134 0.7721 0.1547 0.0419
OPT–2.7b 0.9128 0.7854 0.1396 0.0533
OPT-6.7b 0.9096 0.7902 0.1313 0.0579
OPT-13b 0.9254 0.8183 0.1157 0.0560
Llama-7b 0.9277 0.8256 0.1101 0.0637
Llama-13b 0.9198 0.8107 0.1186 0.0742

Table 5: MRPC Dataset Results

compared to T5 models but similar performance to OPT models.
For SST-2, the ASR of T5 models exhibit a trend entirely contrary
to that observed for MRPC. It reaches its minimum at the T5-770m
model. For the OPT models, although their ASR is much lower
compared to the T5 series, there is a consistent decrease in ASR as
the size of the OPT models increases. Regarding the Llama models,
the 7b model slightly outperforms the 13b in terms of accuracy and
ASR.

In Tables 6 and Tables 7, analyzing results from multi-class clas-
sification tasks, a distinct pattern emerges. These datasets reveal
enhanced stability against synonym substitution attacks. For T5
models, the data shows a lower ASR on these tasks compared to
binary datasets, suggesting a better resistance to attacks in complex
classification scenarios. In contrast, OPT and Llama models exhibit
a higher ASR on the AGNews and DBpedia14 datasets. Another
result is that for both T5 and OPT series, there is a marked decline
in ASR around the 770 million or 1 billion parameter threshold. This
indicates an increased robustness and better handling of adversarial
attacks with the scale-up of model size.

6.1.1 Analysis. When examining the accuracy of the model, we
observed a trend where the accuracy gradually increases with the

Acc Acc/attack ↑ ASR ↓ Replacement
T5-60m 0.8606 0.3608 0.5807 0.1740
T5-220m 0.9084 0.5370 0.4098 0.1864
T5-770m 0.9278 0.6597 0.2896 0.1860
T5-3b 0.9193 0.7267 0.2102 0.1834
T5-11b 0.9212 0.8469 0.1531 0.1867

OPT-125m 0.8152 0.6040 0.2591 0.0809
OPT-350m 0.8321 0.6036 0.2746 0.0864
OPT-1.3b 0.8806 0.6316 0.2828 0.0912
OPT–2.7b 0.9175 0.7028 0.2340 0.0833
OPT-6.7b 0.9341 0.7143 0.2353 0.0756
OPT-13b 0.9456 0.7745 0.1809 0.0941
Llama-7b 0.9328 0.7315 0.2158 0.0864
Llama-13b 0.9338 0.7688 0.1767 0.0837

Table 6: AGNews Dataset Results

Acc Acc/attack ↑ ASR ↓ Replacement
T5-60m 0.9817 0.3974 0.5952 0.1187
T5-220m 0.9765 0.4082 0.5819 0.1234
T5-770m 0.9921 0.7476 0.2464 0.1483
T5-3b 0.9914 0.8608 0.1317 0.1550
T5-11b 0.9919 0.8815 0.1113 0.1724

OPT-125m 0.9034 0.6512 0.2792 0.0534
OPT-350m 0.9511 0.6718 0.2937 0.0305
OPT-1.3b 0.9784 0.7046 0.2798 0.0496
OPT–2.7b 0.9822 0.7513 0.2351 0.0552
OPT-6.7b 0.9907 0.7780 0.2147 0.0641
OPT-13b 0.9916 0.7912 0.2021 0.0576
Llama-7b 0.9908 0.7596 0.2333 0.0881
Llama-13b 0.9921 0.7286 0.2656 0.0912

Table 7: DBPedia Dataset Results

growth in model size. However, after reaching a certain size thresh-
old, the accuracy tends to saturate, stabilizing around specific val-
ues. This phenomenon is particularly pronounced when tested on
datasets like DBpedia. When comparing different models operating
at the same parameter scale, their performances were found to be
quite similar, without any significant disparities.

However, the experiments related to robustness revealed more
distinct differences. From Figure 2a, Figure 2b and Figure 2c, we
havemore intuitive results. Observing the performance of a uniform
model across various datasets, we made the following observations:
T5 Model: As the size of the T5 model increases, its ASR gradually
decreases. This suggests that larger models, with more parameters,
tend to have a deeper understanding of language. As a result, they
can maintain stronger stability in the face of various disturbances.
However, on datasets like MRPC and SST-2, there were noticeable
fluctuations in performance. One possible explanation for this is
that as the model size grows, the words selected based on the
model’s gradient become more precise and have a more significant
impact on the results. This introduces a trade-off related to model
size.
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OPT Model: For the OPT model, a similar trend was observed
across most datasets. As the model size increased, its robustness
generally improved, aligning with the observations made for the
T5 model.
LlamaModel: For the Llama model, the differences in performance
between the two sizes were minimal. This suggests that the size
variation did not significantly influence the model’s robustness.

However, when comparing different models, the disparities be-
come even more pronounced. It is obvious that the T5 model’s ASR
and replacement rate are significantly higher than those of OPT and
Llama. This indicated that Decoder-only Causal LMs have higher
robustness against encoder-decoder architectures under synonym
substitution adversarial attacks.

6.2 LLMs Fine-tuning Techniques (RQ2)
6.2.1 Instruction Tuning. To study the impact of instruction tuning
onmodel robustness, we compared the performance of Flan-T5 with
the standard T5. The Flan-T5 is an advanced variant of T5 that has
undergone instruction tuning across over a thousand downstream
tasks. In contrast, the traditional T5 was not trained with such an
extensive procedure.

Based on our experimental results, as shown in the table, there
is a significant decline in accuracy for both T5 and Flan-T5 under
adversarial attacks. This observation indicates that models, irrespec-
tive of whether they have undergone instruction tuning, remain
susceptible to adversarial manipulations. Furthermore, consistent
with our previous findings, we noticed that as the model size in-
creases, the attack success rate tends to decline.

Interestingly, as shown in Fig 3, our results indicated that Flan-
T5 exhibits a higher ASR than the standard T5. This suggests that
models subjected to instruction tuning, like Flan-T5, can be more
easily compromised. We hypothesize the primary reason for this
observation:

The instruction tuning process for Flan-T5 encompassed datasets
similar to IMDB. This might have rendered the model with a deeper
understanding of tasks related to this data. As a result, attackers
could more easily pinpoint words in the input that were influential
and susceptible to replacement.

Acc Acc/attack ↑ ASR ↓ Replacement

T5-60m 0.8484 0.1256 0.8491 0.0929
Flan-T5-60m 0.8453 0.0882 0.8968 0.0820
T5-220m 0.8011 0.0436 0.9463 0.0722

Flan-T5-220m 0.8777 0.0996 0.8862 0.0978
T5-770m 0.9048 0.1536 0.8312 0.1143

Flan-T5-770m 0.9141 0.1171 0.8729 0.1106
T5-3b 0.9146 0.3259 0.6436 0.1413

Flan-T5-3b 0.9228 0.2328 0.7489 0.1261
T5-11b 0.9348 0.4904 0.4752 0.1326

Flan-T5-11b 0.9122 0.3098 0.6604 0.1330

Table 8: Experimental results comparing T5 and Flan-T5 after
instruction tuning using the IMDB dataset.

6.2.2 Precisions. In machine learning, balancing model size with
precision is crucial. Model size indicates capacity, and precision
affects information granularity. Larger models typically perform
better but require more computational resources. Techniques like
quantization and precision adjustments help deploy these models

more efficiently. We studied the impact of precision settings on the
robustness of T5-770m and OPT-1.3b models by comparing their
performance under various precisions.

For the T5-770m and OPT-1.3b models, it’s clear that as precision
changes from fp16 to int4, there isn’t a significant drop in their
inherent accuracy. This indicates that models can handle reduced
precision without compromising their general performance drasti-
cally. What’s more, across different precision settings, the attack
success rate for the T5-770m models remains fairly higher, which
shows the same conclusion as in 6.1. However, the precision set-
tings do not show a consistent pattern of influence on the ASR and
replacement rate.

In essence, while different models exhibit different robustness
against adversarial attacks, the precision settings do not play a
significant role in this robustness.

Acc Acc/attack ↑ ASR ↓ Replacement

T5-770m-fp16 0.9106 0.1631 0.8208 0.1196
T5-770m-int8 0.9048 0.1536 0.8312 0.1143
T5-770m-int4 0.9210 0.1725 0.8127 0.1211
OPT-1.3b-fp16 0.9218 0.7496 0.1868 0.0536
OPT-1.3b-int8 0.9231 0.7515 0.1859 0.0421
OPT-1.3b-int4 0.9207 0.7531 0.1820 0.0498

Table 9: Results of T5-770m and OPT-1.3b models under dif-
ferent precision settings, including fp16, int8 and int4. The
performance is evaluated with IMDB dataset.

Acc Acc/attack ↑ ASR ↓ Replacement

T5-770m 0.9067 0.1499 0.8347 0.1036
T5-770m-Lora 0.9048 0.1536 0.8312 0.1143

OPT-1.3b 0.9135 0.7448 0.1847 0.0366
OPT-1.3b-LoRA 0.9231 0.7515 0.1859 0.0421

OPT-2.7b 0.9266 0.7741 0.1646 0.0452
OPT-2.7b-LoRA 0.9198 0.7651 0.1682 0.0396

Table 10: Results of the T5-770m, OPT-1.3b, and OPT-2.7b
models’ performance with and without the application of
LoRA, using the IMDB dataset.

6.2.3 LoRA. As mention in Sec 3.2, LoRA has been a groundbreak-
ing approach, bringing about significant reductions in memory
requirements during model training. In this case, the potential
trade-off in question is model robustness.

For our investigation, we selected the T5-770m, OPT-1.3b, and
OPT-2.7b models. Experiments were conducted under two condi-
tions for each model: with and without the application of LoRA.
The IMDB dataset served as our benchmark for this analysis.

The experiments show that adversarial attacks significantly re-
duce accuracy across all models, regardless of LoRA’s use. However,
crucially, both the attack success rate and replacement rate, key
measures of resilience against adversarial tactics, were unaffected
by LoRA. This indicates that while LoRA enhances optimization,
it doesn’t negatively impact the model’s defense against adver-
sarial attacks, providing optimization benefits without sacrificing
robustness.



Assessing Adversarial Robustness of Large Language Models: An Empirical Study Conference’17, July 2017, Washington, DC, USA

(a) T5 model (b) OPT model (c) Llama model

Figure 2: The experimental results of different models on various datasets.

Figure 3: The experimental results of T5 and Flan-T5 on IMDB
dataset

6.3 Model Architectures (RQ3)
The architecture of a model’s output space significantly influences
its performance and resilience against adversarial attacks. For mod-
els with a classification head, the output is simplified to a binary
decision, contrasting with OPT models without such a head, which
must identify ’negative’ or ’positive’ labels from a vast vocabulary.
This distinction impacts the model’s accuracy.

Our data shows that smaller models with a classification head
are more accurate than headless ones due to their simplified out-
put space, which aids decision-making, especially in models with
limited processing power. Moreover, models with a head reach
their peak performance faster, achieving accuracy saturation more
quickly.

However, an intriguing observation is the heightened attack suc-
cess rate for models with a classification head. On the surface, this
suggests that launching adversarial attacks against these models
is a more straightforward task.One main factor contributes to this
vulnerability is DeepFool’s efficacy with last layer FFN: In such
models, DeepFool can more readily discern the optimal direction
for launching its attack, amplifying the ASR. This marked efficiency
underscores a reduced robustness in these models against adver-
sarial intrusions.

Figure 4: Different precisions on the IMDB
dataset (T5 model)

Figure 5: Different precisions on the IMDB
dataset (OPT Model)

Figure 6: Results of LoRA on IMDB dataset

Figure 7: Comparison of different models and precisions on
the IMDB dataset
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Acc Acc/attack ↑ ASR ↓ Replacement

OPT-125m 0.8616 0.6637 0.2297 0.0365
OPT-125m-head 0.9074 0.6215 0.3151 0.0476

OPT-350m 0.8564 0.6924 0.1915 0.0305
OPT-350m-head 0.9152 0.6643 0.2741 0.0682

OPT-1.3b 0.9231 0.7515 0.1859 0.0421
OPT-1.3b-head 0.9316 0.7621 0.1819 0.0533

OPT–2.7b 0.9198 0.7651 0.1682 0.0396
OPT–2.7b-head 0.9367 0.7704 0.1775 0.0516

OPT-6.7b 0.9408 0.7864 0.1641 0.0528
OPT-6.7b-head 0.9422 0.7765 0.1759 0.0627

OPT-13b 0.9431 0.8016 0.1500 0.0671
OPT-13b-head 0.9427 0.7877 0.1644 0.0641

Table 11: Experimental results of OPT models with/without
classification head with IMDB dataset.

Figure 8: Results of classfication head on IMDB dataset

6.4 Attack Examples
In this section, we are going to show some adversarial examples
for different tasks and models in Table 12

7 Conclusion
This paper utilized a novel geometric adversarial attack method
to assess the robustness of leading LLMs, utilizing advanced fine-
tuning techniques for task-specific model adaptation. Our ground-
breaking approach revealed that these models exhibit variable sen-
sitivity to adversarial attacks, influenced by their size and architec-
tural differences. This indicates inherent vulnerabilities in LLMs,
yet suggests potential resilience in certain configurations. Contrary
to expectations, LLM-specific techniques did not markedly reduce
robustness. Future research could explore models like RLHF and
model parallelism approaches within this framework. Additionally,
the evolution of more complex adversarial attacks promises deeper
insights into LLM strengths and weaknesses.

Ethics statement
In our research, we employ adversarial attack methodologies to
generate text, aiming to evaluate the robustness of LLMs against
inputs. However, we acknowledge the ethical implications associ-
ated with the use of adversarial attacks. One primary concern is the
potential generation of harmful information. This includes text that
may be offensive, misleading, or harmful in other ways. Therefore,

one should be cautious when taking such methods into practical
use.
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repave the highway so motorists could use the eastbound lanes for tours"
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Original: "Dial M for Music Mobile-phone makers scored a surprising hit four years ago when they introduced handsets equipped with
tiny digital cameras. Today, nearly one-third of the cell phones sold worldwide do double duty as cameras."
Adversarial: "Dial M for Melody Mobile-phone manufacturers scored a surprising hit four years ago when they unveiled handsets
equipped with tiny digital cameras. Today, nearly one-third of the cell phones sold worldwide do double duty as cameras."
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A Research Methods
A.1 Experiments Setup
In our study, we employ pretrained weights from HuggingFace
and use int8 quantization for GPU memory optimization. We also
standardize the use of LoRA to reduce training parameters. For
models under 3 billion parameters, experiments are conducted on
an NVIDIA RTX 3090 (24GB), whereas models above 3 billion pa-
rameters are tested on NVIDIA RTX A6000 (48GB) or NVIDIA A100
(40GB), catering to both fine-tuning and attack simulations.

A.2 Dataset
In this section, we will provide more details about the datasets used
in this work.

IMDB: This dataset contains 50,000 movie reviews for sentiment
analysis, equally divided between positive and negative sentiments.

SST-2: An extension of the original SST, it focuses on the binary
classification of sentiments in movie review sentences.

MRPC: A corpus for paraphrase identification, it includes sen-
tence pairs from online news sources, annotated for semantic equiv-
alence.

AGNews: This news categorization dataset comprises 120,000
training and 7,600 test samples across four categories:World, Sports,
Business, and Science/Technology.

DBpedia: A large-scale, multi-class dataset from the DBpedia
knowledge base, featuring 560,000 training and 70,000 test samples
across 14 categories.

The statistics of these five datasets are presented in Table 13.

Table 13: Statistics of the Datasets

Dataset Labels Avg Length Train Test

IMDB 2 279.48 25000 25000
MRPC 2 52.89 3670 1730
SST-2 2 19.81 67300 1820

AGNews 4 43.93 120000 7600
DBPedia 14 55.14 560000 7000
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