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ABSTRACT
Utilizing Large Language Models (LLM) as chatbots in di-
verse business scenarios often presents the challenge of main-
taining topic continuity. Abrupt shifts in topics can lead to
poor user experiences and inefficient utilization of computa-
tional resources. In this paper, we present a topic continuity
model aimed at assessing whether a response aligns with the
initial conversation topic. Our model is built upon the expan-
sion of the corresponding natural language understanding
(NLU) model into quantifiable terms using a Naive Bayes
approach. Subsequently, we have introduced an attention
mechanism and logarithmic nonlinearity to enhance its ca-
pability to capture topic continuity. This approach allows
us to convert the NLU model into an interpretable analyti-
cal formula. In contrast to many NLU models constrained
by token limits, our proposed model can seamlessly handle
conversations of any length with linear time complexity. Fur-
thermore, the attention mechanism significantly improves
the model’s ability to identify topic continuity in complex
conversations. According to our experiments, our model
consistently outperforms traditional methods, particularly
in handling lengthy and intricate conversations. This unique
capability offers us an opportunity to ensure the responsible
and interpretable use of LLMs.

1 INTRODUCTION
The rise of large-scale language models (LLMs) [1, 2] has em-
powered chatbots to handle various business tasks, such as
serving as office assistants [3], coding companions [4, 5], and
data explorers [6]. However, leveraging LLMs for these roles
often presents challenges like hallucination [7], offensive
language [8], prompt injection [9], and adversarial attacks
[10]. In addition to these common issues, specific business
applications may introduce unique problems, such as main-
taining topic continuity. For example, when using LLMs as a
∗Both authors contributed equally

customer service chatbot, LLMs are employed to address in-
quiries about specific products or services. However, because
LLM responses are inherently random, there’s no guarantee
that they will consistently remain focused on the intended
topics, potentially resulting in a subpar user experience. On
the other hand, if users veer off into unrelated topics, it could
also lead to the waste of valuable computational resources.
Therefore, ensuring topic coherence between the customer
and the chatbot is crucial.

In customer service, users initially describe their concerns.
When these concerns pertain to the business’s operations,
the customer and chatbot collaborate on solutions [11–14].
Ensuring a smooth conversation involves assessing if the cur-
rent sentence logically follows the prior ones. For example,
if a user discussing refunds suddenly asks, "Can you help me
order a pizza?" – it’s off-topic. This concept is formalized as a
natural language understanding model (NLU) [15], denoted
as 𝑃 (𝑦 |𝑆1, 𝑆2, . . . ; 𝑆𝑁 ). Here, 𝑆𝑖 (for 𝑖 = 1 to 𝑁 − 1) represents
previous N-1 sentences, and 𝑆𝑁 is the current one. The bi-
nary variable 𝑦 indicates whether 𝑆𝑁 aligns with preceding
sentences, keeping the conversation on-topic.

In practical use, when users interact with LLM, we assess
if each new sentence, whether from the user or the LLM,
keeps the conversation on-topic. If it goes off-topic, we guide
it back to business-related subjects or may end the conversa-
tion. So, we assume the previous N-1 sentences are on-topic,
and we calculate whether the newly added 𝑁𝑡ℎ sentence still
aligns with the ongoing conversation. This simplifies the
problem to determining whether the 𝑁𝑡ℎ sentence has
a reasonable contextual relationship with the previ-
ous N-1 sentences. The most commonly used approach to
address this issue is a BERT-based language model [16, 17].
These models are inherently equipped with the capability to
evaluate the contextual relationship between two sentences.
However, employing this approach consistently gives rise to
two inevitable challenges: 1) Token Size Limit and 2) Lack
of Sentence Attention.
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Regarding the first challenge, imagine using a language
model to assess the connection between (𝑆1 +𝑆2 + . . .+𝑆𝑁−1)
and the current sentence 𝑆𝑁 in a conversation. As the conver-
sation grows, the text often exceeds most language models’
token limits, typically set at 512 tokens for many BERT-based
models. Regarding the second challenge, most language mod-
els are trained on sentence pairs from articles where semantic
relationships are consistently close. However, real conver-
sations often involve looser semantic connections. For ex-
ample, a customer might say, “Earlier, you asked about the
missing product serial number, but now I’ve found it." This
response references a part of the conversation from several
rounds back. Concatenating 𝑆1 ∼ 𝑆𝑁−1 as context can lead to
the model struggling to judge the appropriateness of 𝑆𝑁 as a
follow-up. In summary, an effective conversational topic con-
tinuity model must address two key challenges: 1) handling
lengthy conversations, and 2) accommodating semantic
leaps.
To address these challenges, we introduce an innovative

topic continuity model that integrates logarithmic nonlinear-
ity and sentence attention into the naive Bayes framework
[18]. Our method provides a fully analytical formulation of
the problem, effectively addressing the aforementioned is-
sues and delivering significantly superior performance com-
pared to conventional methods.

2 NOLINEAR NAIVE BAYES WITH
ATTENTION MECHANISM

2.1 Model Definition
When a user is engaged in a conversation with a chatbot, our
goal is to identify topic shifts in new sentences, assuming
that the first N-1 sentences are on-topic. As discussed in
Section 1, we can define an NLU model for this problem as a
conditional probability expressed as follows:

𝑃 (𝑦 |𝑆1, 𝑆2, . . . ; 𝑆𝑁 ) (1)

, where 𝑆1 ∼ 𝑆𝑁−1 represents the previous 𝑁 − 1 sentences,
𝑆𝑁 represents the current sentence, and 𝑦, a binary variable,
signals whether the text composed of 𝑆1,∼ 𝑆𝑁 deviates from
the topic. In fact, we can broaden the interpretation of each
variable in Eq.(1). 𝑆𝑖 need not be limited to single sentences; it
can also encompass chunks of multiple sentences, potentially
with overlapping content, as long as the relationships be-
tween 𝑆𝑖 maintain sentence information and sequence. Our
research indicates that employing a sliding window with
appropriate size and strides to construct sentence chunks
consistently yields the best results.Hence, unless specified
otherwise, we assume that all 𝑆𝑖 , 𝑖 = 1 ∼ 𝑁 −1, represent
sentence chunks, with 𝑆𝑁 being a single sentence.

2.2 Naive Bayes With Attention
While estimating Eq.(1) directly using models like BERT is
possible, this approach presents the two issues outlined in
Section 1. To address these challenges, let’s begin with the
Naive Bayes assumption, where the variables (𝑆1, . . . ; 𝑆𝑁 )
are considered independent of each other, and we expand
Eq.(1) upon this assumption as follows:

𝑃 (𝑦 |𝑆1, 𝑆2, · · · ; 𝑆𝑁 ) =
𝑃 (𝑆1 |𝑦)𝑃 (𝑆2 |𝑦) · · · 𝑃 (𝑆𝑁 |𝑦)𝑃 (𝑦)

𝑃 (𝑆1)𝑃 (𝑆2) · · · 𝑃 (𝑆𝑁 )

= Π𝑁
𝑖

[
𝑃 (𝑆𝑖 |𝑦)
𝑃 (𝑆𝑖 )

]
𝑃 (𝑦) (2)

Indeed, the Naive Bayes assumption that there is no semantic
connection between sentences contradicts the core problem
addressed in this paper. Therefore, we utilize Naive Bayes
purely as a mathematical tool in this context and we will
introduce additional techniques to overcome the limitations
inherent in the Naive Bayes assumption.

We aim to incorporate an attention mechanism into Eq.(2).
To achieve this, we have intentionally reformulated the equa-
tion to include pairwise probability. Consequently,

𝑃 (𝑦 |𝑆𝑖 , 𝑆𝑁 ) =
𝑃 (𝑆𝑖 , 𝑆𝑁 |𝑦)𝑃 (𝑦)

𝑃 (𝑆𝑖 , 𝑆𝑁 )
=
𝑃 (𝑆𝑖 |𝑦)𝑃 (𝑆𝑁 |𝑦)𝑃 (𝑦)

𝑃 (𝑆𝑖 )𝑃 (𝑆𝑁 )
Thus,

𝑃 (𝑆𝑖 |𝑦) =
𝑃 (𝑦 |𝑆𝑖 , 𝑆𝑁 )𝑃 (𝑆𝑖 )𝑃 (𝑆𝑁 )

𝑃 (𝑆𝑁 |𝑦)𝑃 (𝑦)
Let’s plug this term into Eq.(2). We have,

𝑃 (𝑦 |𝑆1 . . . ; 𝑆𝑁 ) = Π𝑁
𝑖

{
𝑃 (𝑦 |𝑆𝑖 , 𝑆𝑁 )𝑃 (𝑆𝑖 )𝑃 (𝑆𝑁 )

𝑃 (𝑆𝑁 |𝑦)𝑃 (𝑦)
1

𝑃 (𝑆𝑖 )

}
𝑃 (𝑦)

So,

𝑃 (𝑦 |𝑆1 · · · ; 𝑆𝑁 ) = Π𝑁
𝑖 {𝑃 (𝑦 |𝑆𝑖 , 𝑆𝑁 )} 𝑃−𝑁 (𝑆𝑁 |𝑦)𝑃𝑁 (𝑆𝑁 )𝑃1−𝑁 (𝑦)

Take log on both side,

𝑙𝑜𝑔𝑃 (𝑦 |𝑆1 · · · ; 𝑆𝑁 ) =
𝑁∑︁
𝑖=1

{𝑙𝑜𝑔𝑃 (𝑦 |𝑆𝑖 , 𝑆𝑁 )}

− 𝑁𝑙𝑜𝑔𝑃 (𝑆𝑁 |𝑦) + 𝑁𝑙𝑜𝑔𝑃 (𝑆𝑁 ) + (1 − 𝑁 )𝑙𝑜𝑔𝑃 (𝑦)
Note that in the first summation, there exists a term 𝑙𝑜𝑔𝑃 (𝑦 |𝑆𝑁 , 𝑆𝑁 ),
which can be approximated as 𝑙𝑜𝑔𝑃 (𝑦 |𝑆𝑁 , 𝑆𝑁 ) ≈ 𝑙𝑜𝑔𝑃 (𝑦 |𝑆𝑁 ) =
𝑙𝑜𝑔𝑃 (𝑆𝑁 |𝑦) + 𝑙𝑜𝑔𝑃 (𝑦) − 𝑙𝑜𝑔𝑃 (𝑆𝑁 ). Additionally, the term
𝑙𝑜𝑔𝑃 (𝑦) is essentially a constant and does not affect any
of the subsequent calculations, so we can safely disregard
this term. Thus, we have:

𝑙𝑜𝑔𝑃 (𝑦 |𝑆1 · · · ; 𝑆𝑁 ) =
𝑁−1∑︁
𝑖=1

{𝑙𝑜𝑔𝑃 (𝑦 |𝑆𝑖 , 𝑆𝑁 )}

+ (𝑁 − 1) [𝑙𝑜𝑔𝑃 (𝑆𝑁 ) − 𝑙𝑜𝑔𝑃 (𝑆𝑁 |𝑦)] (3)

The equation above has several key points. Firstly, we in-
troduced a pairwise term for chunk/current-sentence pairs,
directing attention from the current sentence, 𝑆𝑁 , to another
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chunk, 𝑆𝑖 . Secondly, expressing Naive Bayes in logarithmic
probabilities simplifies the problem, yielding a linear out-
come. Lastly, each term involves a maximum of one chunk
plus one sentence, ensuring token length stays within lan-
guage model limits. As the conversation progresses, time
consumption increases linearly, but deep learning models
can batch attention terms, potentially maintaining constant
time consumption if the chunk count remains within GPU
memory limits.

2.3 Logarithmic Non-linearity
As discussed in the previous section, the assumption of in-
dependent variables, leading to a linear combination of log-
arithmic terms, is inadequate for addressing this problem.
Therefore, we need to make Eq.(3) nonlinear to overcome
the limitations of Naive Bayes.
To introduce nonlinearity, let’s analyze each term. In Eq.

(3), the first term computes an equal-weighted average among
the attention terms, omitting the factor 1/(𝑁 − 1). This op-
eration resembles a mathematical "functional," transforming
the vector [𝑙𝑜𝑔𝑃 (𝑦 |𝑆𝑖 , 𝑆𝑁 ), 𝑖 = 1 ∼ 𝑁 − 1] into a single scalar
value. In machine learning, this is often referred to as average
pooling.
Regarding the second term, comprised of [𝑙𝑜𝑔𝑃 (𝑆𝑁 ) −

𝑙𝑜𝑔𝑃 (𝑆𝑁 |𝑦)], its meaning is straightforward. Let’s consider
a customer service chatbot scenario where the user’s fo-
cus is solely on a specific product, like a cell phone. Here,
𝑙𝑜𝑔𝑃 (𝑆𝑁 |𝑦) represents the likelihood of sentence 𝑆𝑁 occur-
ring within this product-specific context, while 𝑙𝑜𝑔𝑃 (𝑆𝑁 )
represents the log-probability of sentence 𝑆𝑁 appearing in
any chatbot conversation without specific product restric-
tions. Therefore, a more negative value on this term high-
lights the likelihood of the sentence 𝑆𝑁 being more focused
on the topic of cell phones.

Based on the above discussion, a straightforward approach
is to maintain the mathematical form but introduce more
non-linear operations. This can be achieved by replacing∑ → F and (𝑁 − 1) → 𝛼 as shown below:

𝑙𝑜𝑔𝑃 (𝑦 |𝑆1 · · · 𝑆𝑁 ) = F
{
𝑙𝑜𝑔𝑃 (𝑦 |S̃, 𝑆𝑁 )

}
+ 𝛼 (S) [𝑙𝑜𝑔𝑃 (𝑆𝑁 ) − 𝑙𝑜𝑔𝑃 (𝑆𝑁 |𝑦)] (4)

, where 𝑙𝑜𝑔𝑃 (𝑦 |S̃, 𝑆𝑁 ) is a vector composed of 𝑙𝑜𝑔𝑃 (𝑦 |𝑆𝑖 , 𝑆𝑁 )
with 𝑖 = 1 ∼ 𝑁 − 1, F is an arbitrary functional that trans-
forms the vector into a scalar, and 𝛼 , is a positive coefficient
(since 𝑁 − 1 > 0) dependent on all sentence chunks, includ-
ing 𝑆𝑁 . In Eq.(4), we’ve replaced the original equal-weighted
averaging on 𝑙𝑜𝑔𝑃 (𝑦 |S̃, 𝑆𝑁 ) with a custom functional F and
transformed the coefficient in the second term into func-
tions related to S. Although Eq.(4) resembles Eq.(3), it no

longer relies on the independence variable assump-
tion of naive Bayes. We’ll refer to the first term as the
"attention term" and the second term as the "residual term",
highlighting the difference between two log-probabilities. In
the upcoming section, we’ll delve into the design of F and
𝛼 .

3 FORMULATION OF NONLINEAR
TRANSFORMATION

3.1 Designing Attention Functional
In a conservation, sentences typically fall into three sce-
narios: 1). Normal Sentences correspond to responses to
the previous sentence, the most frequent scenario. 2). Leap
Sentences correspond to responses to earlier sentences in
the conversation, constituting a “leap conversation". In the
following, we use the term "target sentence" to denote the
sentence that the current sentence 𝑆𝑁 responds to. 3). Topic
Shift Sentences indicate a shift in topic.
To capture these three scenarios, we define the notation

𝑙𝑜𝑔P𝑚𝑎𝑥 = max{𝑙𝑜𝑔𝑃 (𝑦 |S̃, 𝑆𝑁 )} and 𝑙𝑜𝑔P𝑎𝑣𝑔 = 𝑎𝑣𝑔{𝑙𝑜𝑔𝑃 (𝑦 |S̃, 𝑆𝑁 )}.
Then the attention functional is defined as:

F
{
𝑙𝑜𝑔𝑃 (𝑦 |S̃, 𝑆𝑁 )

}
= [1 + tanh(𝑙𝑜𝑔P𝑚𝑎𝑥 )] 𝑙𝑜𝑔P𝑚𝑎𝑥

− tanh(𝑙𝑜𝑔P𝑚𝑎𝑥 )𝑙𝑜𝑔P𝑎𝑣𝑔 (5)
As log-probabilities are always negative, the first coef-

ficient, 1 + 𝑡𝑎𝑛ℎ(𝑙𝑜𝑔P𝑚𝑎𝑥 ), indicates that as 𝑙𝑜𝑔P𝑚𝑎𝑥 ap-
proaches zero, we primarily use 𝑙𝑜𝑔P𝑚𝑎𝑥 to approximate
Eq.(1). Conversely, as 𝑙𝑜𝑔P𝑚𝑎𝑥 approaches negative infinity,
we rely on 𝑙𝑜𝑔P𝑎𝑣𝑔 for the estimate.

The approach is clear. In Scenario 1, assuming previous
text 𝑆1, . . . 𝑆𝑁−1 is on-topic and 𝑆𝑁 responds to 𝑆𝑁−1, we
focus on evaluating if 𝑆𝑁 aligns with 𝑆𝑁−1, approximat-
ing 𝑃 (𝑦 |𝑆1, . . . 𝑆𝑁 ) ≈ 𝑃 (𝑦 |𝑆𝑁−1, 𝑆𝑁 ). Similarly, in Scenario
2, when 𝑆𝑁 responds to a specific chunk earlier in the con-
versation, we expect 𝑃 (𝑦 |𝑆1, . . . 𝑆𝑁 ) ≈ 𝑃 (𝑦 |𝑆𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑆𝑁 ). In
both scenarios, where there’s a clear link between current
sentences and a specific chunk, the likelihood they form of-
ten peaks in the 𝑙𝑜𝑔𝑃 (𝑦 |S̃, 𝑆𝑁 ) vector. Hence, for these cases,
we choose 𝑙𝑜𝑔P𝑚𝑎𝑥 as the dominant term.

When 𝑆𝑁 abruptly changes topics, it lacks context within
the conversation, leading to bias if using 𝑙𝑜𝑔P𝑚𝑎𝑥 for Eq.(1).
Instead, opting for 𝑙𝑜𝑔P𝑎𝑣𝑔 is better. In this scenario, Eq.(5)
simplifies to the naive Bayes case, indicating that the inde-
pendence variable assumption is a suitable approximation
for the NLU model when there’s no clear contextual link
between the current sentence and prior conversation.

3.2 Designing Residual Coefficient
Our experiments consistently show that Eq.(5) often provides
outstanding results on its own. Hence, when crafting the
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Figure 1: Computation graph for calculating the NLU likelihood (highlighted in orange). The blue blocks represent
fundamental components of our model.

residual coefficient, we view it as a corrective purturbation
for situations where Eq.(5) lacks confidence. By defining
the probabilities 𝑃𝑛𝑙𝑢 = 𝑒𝑃 (𝑦 |𝑆1,...,𝑆𝑁 ) and 𝑃𝑎𝑡𝑡 = 𝑒F{𝑃 (𝑦 |S,𝑆𝑁 ) }

from the NLU model and attention term respectively, we aim
for the perturbation to possess three key properties: 1) Peak
at 𝑃𝑎𝑡𝑡 = 0.5 (low confidence), 2) Approach zero as 𝑃𝑎𝑡𝑡 nears
0.0 or 1.0 (high confidence), and 3) Be unbiased, symmetrical
around 𝑃𝑎𝑡𝑡 = 0.5.
To fulfill these criteria, a straightforward mathematical

form is a sine function:
𝑃𝑛𝑙𝑢 = 𝑃𝑎𝑡𝑡 + 𝛽 sin(𝜋𝑃𝑎𝑡𝑡 )

,where 𝛽 ≪ 0.5. The condition 𝛽 ≪ 0.5 arises from the
situation where the perturbation term attains its maximum
value at 𝑃𝑎𝑡𝑡 = 0.5 and 𝑃𝑛𝑙𝑢 = 0.5 + 𝛽 . Given its nature as
a perturbation, 𝛽 must be ≪ 0.5. By taking a logarithm on
both side, we get:

𝑙𝑜𝑔𝑃𝑛𝑙𝑢 = 𝑙𝑜𝑔[𝑃𝑎𝑡𝑡 + 𝛽 sin(𝜋𝑃𝑎𝑡𝑡 )]
= 𝑙𝑜𝑔(𝑃𝑎𝑡𝑡 ) + 𝑙𝑜𝑔[1 + 𝛽𝑠𝑖𝑛(𝜋𝑃𝑎𝑡𝑡 )/𝑃𝑎𝑡𝑡 ]

. Since 𝛽𝑠𝑖𝑛(𝜋𝑃𝑎𝑡𝑡 )/𝑃𝑎𝑡𝑡 ≪ 1, first order of Taylor expansion
yields

𝑙𝑜𝑔𝑃𝑛𝑙𝑢 ≈ 𝑙𝑜𝑔(𝑃𝑎𝑡𝑡 ) + 𝛽 sin(𝜋𝑃𝑎𝑡𝑡 )/𝑃𝑎𝑡𝑡
.

Comparing this from with eq.(4), we assert 𝛼 should be:

𝛼 =
sin(𝜋𝑒F{𝑃 (𝑦 |S,𝑆𝑁 ) })

𝑒F{𝑃 (𝑦 |S,𝑆𝑁 ) }
𝜂

|𝑙𝑜𝑔(𝜖) | (6)

Here, 𝑃𝑎𝑡𝑡 is represented as its original form 𝑒F{𝑃 (𝑦 |S,𝑆𝑁 ) } and
the term 𝜂/|𝑙𝑜𝑔(𝜖) | serves as a scaling factor with 𝜂 ≪ 0.5

and 𝜖 is an arbitrarily small number, such as 10−3 used in
this article. The rationale behind the scaling factor is ev-
ident. As a probability 𝑃 approaches 0, 𝑙𝑜𝑔𝑃 approaches
−∞. Thus, in practical calculations, we designate a small
value 𝜖 , and any probability lower than 𝜖 is set to 𝜖 to
prevent computational instability. Consequently, the log-
difference term [log 𝑃 (𝑆𝑁 ) − log 𝑃 (𝑆𝑁 |𝑦)] in eq.(4) ranges
between ± log(𝜖) ≈ ±6.9. By incorporating | log(𝜖) | into the
scaling factor, we normalize the log-difference to fall within
the range of −1 to +1. Since

𝛽 =
𝜂

| log(𝜖) | [log 𝑃 (𝑆𝑁 |𝑦) − log 𝑃 (𝑆𝑁 )] ≪ 0.5

by comparing with eq.(6), it is imperative to ensure that
𝜂 ≪ 0.5.

Eq. (6) holds mathematical significance. sin(𝜋𝑃𝑎𝑡𝑡 )/𝑃𝑎𝑡𝑡
guarantees adherence to the three properties mentioned ear-
lier. The log-difference [log 𝑃 (𝑆𝑁 ) − log 𝑃 (𝑆𝑁 |𝑦)] in eq.(4)
measures the perturbation’smagnitude, normalized by |𝑙𝑜𝑔(𝜖) |,
while 𝜂 controls its maximum strength. Though derived from
the perturbation assumption, eq.(6) ensures 𝑃𝑛𝑙𝑢 stays within
the 0 to 1 range, akin to a probability, as long as 𝜂 ≤ 0.5. In
the following, we stick to 𝜖 = 0.001 and 𝜂 = 0.2, usually
yielding favorable outcomes, unless stated otherwise.

3.3 Estimation of Fundamental
Components

So far, we have derived all the expressions for NLU model,
which are given by Eq.(4), Eq.(5), and Eq.(6). To compute
these formulas, we need to estimate 𝑃 (𝑦 |𝑆𝑖 , 𝑆𝑁 ), 𝑃 (𝑆𝑁 |𝑦),
and 𝑃 (𝑆𝑁 ).
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AttentionTerm 𝑃 (𝑦 |𝑆𝑖 , 𝑆𝑁 ) involves determiningwhether
there is a contextual relationship between (𝑆𝑖 , 𝑆𝑁 ), and this
can be estimated using language models like BERT. In many
machine learning papers, this task is often referred to as Next
Sentence Prediction (NSP) [19, 20]. There are many open-
source NSP models available on platforms like Hugging Face
and there’s no need for us to retrain them.
Residual Term Estimating 𝑃 (𝑆𝑁 |𝑦) and 𝑃 (𝑆𝑁 ) involves

context-dependent factors. In theory, these quantities should
be calculated through integration over all variables:

𝑃 (𝑆𝑁 |𝑦) =
∫

𝑃 (𝑆1 . . . 𝑆𝑁 |𝑦)𝑑𝑆1 . . . 𝑑𝑆𝑁−1

and
𝑃 (𝑆𝑁 ) =

∫
𝑃 (𝑆1 . . . 𝑆𝑁 )𝑑𝑆1 . . . 𝑑𝑆𝑁−1

. However, practical calculations of these integrals are im-
probable. Instead, we employ an indirect approach.

For instance, consider a customer service chatbot designed
to respond to various product-related queries, such as “cell
phones." To establish 𝑃 (𝑆𝑁 |𝑦) for the “cell phone" topic, we
randomly sample numerous sentences from historical con-
versations with topic of cell phones. Estimating the likeli-
hood of a sentence appearing in the context of the topic can
be done using an out-of-distribution (OOD) method, like
Isolation Forest [21, 22]. Here’s how it works:

• Encode each sentence using a pre-trained models,
such as Sentence BERT [23].

• Train an Isolation Forest with this dataset to generate
anomaly scores for all sentences. Here we invert the
sign compared to the original paper, so higher anom-
aly scores 𝜃 signify a greater likelihood of a sentence
being included in the dataset.

• Once the distribution of 𝜃 is obtained, we estimate
its probability density function 𝑝 (𝜃 ) and for a fu-
ture sentence with a score 𝜃 = 𝑐 , the corresponding
probability is given by the Cumulative Distribution
Function (CDF):

𝑝 (𝑆𝑁 |𝑦) =
∫ 𝑐

−∞
𝑝 (𝜃 )𝑑𝜃

.
We can use the same approach to estimate 𝑃 (𝑆𝑁 ), but without
specific topic constraints. For 𝑃 (𝑆𝑁 ), we sample sentences
from historical dialogue data across all topics to train the
OOD model. In practical business scenarios, chatbots are
often designed to answer questions related to limited product
lines. Therefore, we can pre-train 𝑝 (𝑆𝑁 |𝑦) for each product
line and store them in cache. When a conversation’s topic is
determined, we swiftly employ the corresponding model.
Regarding the use of CDF as probabilities, it may seem

that assigning a probability of 100% to data with the highest
scores is unreasonable. However, our primary interest lies

in the difference in log-probabilities. Therefore, as long as
the hyperparameters of these two OOD models are similar
enough to ensure that the anomaly score distributions they
estimate fall within a comparable range, their differences
remain meaningful for log-probabilities.
So far, we have approximated Eq.(1) using Eq.(4)-(6). To

help readers understand the calculation process, we have
represented a computation graph in Figure 1.

4 EXPERIMENTS
4.1 Dataset
For the experiment, we used a dataset that was generated
by professional customer service agents interacting with an
LLM, simulating customers asking the LLM questions related
to online video streaming. The dataset was entirely generated
through simulation and did not use any real user data, with
the purpose of protecting user privacy. We sampled data
from the following four different categories:

• Normal Conversation (on-topic) 1000 data points
where the current sentence responses to the preced-
ing sentence.

• Leap Conversation (on-topic) 1000 data points in
which the current sentence is a response to an earlier
sentence in the conversation.

• Out-of-Domain Topic Shift (off-topic): 1000 data
pointswhere the current sentence diverges completely
from the main topic and is entirely unrelated to Ama-
zon’s services.

• In-domain Topic Shift (off-topic) 1000 data points
in which the current sentence diverges significantly
from the main topic but remains relevant to Ama-
zon’s services.

We labeled all on-topic data points, including normal and
leap conversations, as 𝑦 = 1, while deviation conversations
were labeled as 𝑦 = 0, resulting in a binary classification task.
Note that while there are 4000 data points in the dataset,
we don’t need to collect 4000 distinct conversations (even
though we have done so). We can simply choose different
sentences as 𝑆𝑁 within a single conversation to generate
multiple data points.

4.2 Benchmark Test
We aim to evaluate ourmodel’s performance across the entire
dataset. Employing a sliding window technique, we gener-
ated sentence chunks, each comprising 4 sentences with a
stride of 2. This method yielded chunks 𝑆𝑖 (where 𝑖 = 1 to
𝑁 − 1), with every 4 sentences forming one chunk and a
2-sentence overlap between adjacent windows.

To calculate 𝑃 (𝑦 |𝑆𝑖 , 𝑆𝑁 ), 𝑃 (𝑆𝑁 |𝑦), and 𝑃 (𝑆𝑁 ), we used spe-
cific models. For 𝑃 (𝑦 |𝑆𝑖 , 𝑆𝑁 ), we employed Conversational
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Figure 2: Impact of attention and residual terms. (a)-(b): Normalized Distribution of 𝑃𝑛𝑙𝑢 without residual term
(a) and with residual term (b) for selected uncertain examples. Red lines indicate approximate Gaussian kernel
density fitting. (c)-(d): Average probability output per segmentation, categorized by token length, is shown in (c)
for NSP and (d) for our model. The dashed lines denote 300 tokens. Data beyond 512 tokens were truncated in (c)
due to NSP’s processing limit.

BERT [24], a model trained on extensive chat data from social
networks, which better captures conversational character-
istics. Regarding 𝑃 (𝑆𝑁 |𝑦) and 𝑃 (𝑆𝑁 ), we randomly sampled
over 100,000 sentences from conversations specific to on-
line video streaming and from arbitrary topics, respectively.
These sentences were encoded using Sentence BERT to train
separate Isolation Forest models. The anomaly scores gener-
ated by these models were used to create two CDF functions
for probability estimation.
Based on this setup, we observed that compared to the

original BERT, using Conversational BERT significantly im-
proved AUC performance by over 14.2%, increasing it from
approximately 68.7% to around 82.9% (with accuracy from
67.8% to 80.8%) across the entire dataset. These results demon-
strate that our approach performs well when faced with
real-world data.

4.3 Exploration of the Residual Term
The residual term enhances NLU estimation, especially for
uncertain samples when the attention term lacks confidence.
To measure its effect, we select 400 examples where the
attention term produces confidence levels between 𝑝𝑎𝑡𝑡 =

0.4 and 𝑝𝑎𝑡𝑡 = 0.6, and then measure their changes after
incorporating the residual term.
The results shown in Fig. 2(a)-(b) demonstrate that the

inclusion of the residual term has increased the dispersion of
𝑃𝑛𝑙𝑢 , previously confined to the range of 0.4 to 0.6, indicating

an overall boost in confidence levels. Before introducing the
residual term, the model’s predictions for these 400 examples
resulted in precision of 0.55, recall of 0.50, and AUC of 0.47,
almost resembling random guesses. However, after integrat-
ing the residual term, the metrics improved to precision of
0.62, recall of 0.65, and AUC of 0.61. This underscores the
significant improvement provided by the residual term for
examples that the attention term struggles to handle effec-
tively.

4.4 Exploration of the Attention
Mechanism

In contrast to using BERT directly for Next Sentence Predic-
tion (NSP) to determine whether 𝑆𝑁 is a reasonable context
for (𝑆1 +𝑆2 + . . .+𝑆𝑁−1), our approach focuses on calculating
NLU model, i.e. Eq.(1), using attention mechanisms. This ap-
proach offers advantages when handling long conversations
and leap conversations. In the upcoming experiment, we aim
to compare the benefits of our method with the NSP method
to elucidate the role of attention mechanisms.
Token Length Dependence Here we assess the impact

of token length on both models when predicting out-of-
domain topic shift data. In scenarios where 𝑆𝑁 is unrelated
to the entire conversation, both models should yield results
𝑝𝑛𝑙𝑢 ≈ 0 (off-topic). However, segmenting conversations by
token length and averaging output probabilities reveals the
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Δ𝑇 ≤ 300 300 < Δ𝑇 ≤ 512 Δ𝑇 > 512
Metrics NSP Ours NSP Ours NSP Ours
Precision 0.747 0.734 0.612 0.697 0.588 0.703
Recall 0.961 0.983 0.982 0.972 0.917 0.980

Accuracy 0.818 0.814 0.679 0.775 0.637 0.783
F1 score 0.840 0.841 0.754 0.812 0.717 0.819

Table 1: Comparison among different models with varying token gap lengths Δ𝑇 . The differences between NSP and
our model are minimal for narrow token gap but gradually increase as the token gap widens.

NSP model’s predictions become unstable after 300 tokens
(Fig.2(c)-(d)), while our model’s predictions remain stable
and accurate. Additionally, ourmodelmaintains performance
even when token length exceeds NSP’s maximum limit of
512 tokens, demonstrating the advantages of our approach.
Token Gap Dependence To further analyze attention

mechanisms, we created three datasets, each containing 350
leap conversations with varying token gaps between the
target sentence and the current sentence: 1) less than 300
tokens, 2) between 300 and 512 tokens, and 3) greater than
512 tokens. In each dataset, we intentionally added additional
350 topic shift conversations (half in-domain and half out-
domain), turning them into binary classification tasks.

In our experiments, both the NSP and our model were used
to predict outcomes on these datasets. In the third dataset,
where token length exceeds the NSP model’s limit, we trun-
cated the conversation for NSP input, while our model used
the entire conversation. Table 1 shows the results. NSP per-
forms similarly to our model for small token gaps, but as the
gap widens, our model outperforms NSP significantly. With
token gaps surpassing 512, NSP’s results become unreliable
due to excluding the target sentence from its input. In con-
trast, our model maintains high accuracy. This experiment
underscores our model’s superior performance in managing
conversations of varying lengths, achieving state-of-the-art
results.

5 CONCLUSION
With the rapid development of large languagemodels (LLMs),
the effective utilization of LLMs in various business scenar-
ios has become an important issue. In this paper, we propose
a method that ensures user conversations with LLMs remain
focused on fixed topics. This method is based on the intro-
duction of non-linear transformations and attention mecha-
nisms through an extension of Naive Bayes. Experimental
results across various scenarios consistently demonstrate
that our approach outperforms traditional methods. We be-
lieve this method will be highly beneficial for using LLMs in
topic-constrained scenarios.
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