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ABSTRACT
As computing environments become increasingly complex and dis-
tributed, the volume and complexity of security data generated
across various systems have grown exponentially. Extracting useful
insights from this security data is crucial for effective security ana-
lytics, anomaly detection, and threat identification. However, there
is a lack of comprehensive evaluation benchmarks for assessing the
performance of large language models trained on any security log
dataset, hindering progress in this domain. This paper proposes a
comprehensive evaluation benchmark for security data, addressing
this critical gap. The benchmark is easily adoptable to any security
log dataset and comprises four diverse categories of tasks: super-
vised evaluations, unsupervised evaluations, anomaly detection,
and semantic similarity evaluations. By providing a standardized
framework for evaluation, the benchmark enables objective com-
parison and reproducible assessment of state-of-the-art embedding
models across various computing environments and security log
sources.
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1 INTRODUCTION
In the era of generative AI, the analysis and interpretation of se-
curity telemetry data from cloud computing environments have
become increasingly crucial. As the adoption of cloud services
continues to grow, the volume and complexity of security logs gen-
erated by these environments have escalated exponentially. These
logs contain invaluable information about security events, user
activities, and system behaviors. Large language models trained on
security logs have the potential to learn meaningful representations
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of this data, enabling downstream applications such as anomaly
detection [19, 20], threat mitigation [14, 27], and policy enforce-
ment [17]. By leveraging the power of these models, security teams
can gain a deeper understanding of the patterns and behaviors
captured in the logs, empowering them to proactively identify and
respond to potential security threats.

In the field of natural language processing (NLP), evaluation
benchmarks have played a pivotal role in driving progress and
enabling researchers and practitioners to objectively assess the per-
formance of their models [3, 10, 11, 18]. These benchmarks include
standardized datasets, tasks, and evaluation metrics, allowing for
fair and consistent comparisons across different models and ap-
proaches. Notable examples include the GLUE benchmark [26] for
natural language understanding, SQuAD [21] for question answer-
ing, theWMT [1] series for machine translation, and MTEB [18] the
massive text embedding benchmark that is the most comprehensive
benchmark of text embeddings to date.

However, in the domain of security analytics there is a lack
of comprehensive, and widely accepted evaluation benchmarks.
This gap hinders the ability to effectively evaluate and compare the
performance of large language models trained on security telemetry
data. These models aim to learn meaningful representations of fine-
grained security entities such as account, usernames, APIs, and
larger-grained entities such as events and user activities. Through
these representations, they enable advanced analytics, anomaly
detection, and threat identification.

The development of an evaluation benchmark for large language
models in security data is crucial for several reasons: (1) stan-
dardization; a benchmark would provide a standardized dataset
and set of tasks, allowing for consistent and reproducible evalu-
ation of large language models across different research groups
and organizations. (2) objective comparison; with a common
benchmark, researchers and practitioners can objectively compare
the performance of their large language models, fostering healthy
competition and driving innovation in the field. (3) reproducibil-
ity; a well-defined benchmark ensures that evaluation results are
reproducible, promoting transparency and facilitating knowledge
sharing within the research community. (4) identifying strengths
and weaknesses; benchmarks can reveal the strengths and weak-
nesses of different large language models, guiding future research
efforts and model improvements.

Contribution. In this paper, we propose a pioneering evaluation
benchmark tailored explicitly for security telemetry data, represent-
ing, to the best of our knowledge, the first endeavor of its kind in
this domain. Our evaluation benchmark presents a versatile method-
ology tailored to accommodate any security data, encompassing a
diverse array of tasks and datasets meticulously curated to deliver
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a comprehensive and holistic assessment of state-of-the-art large
language models. Specifically, it includes:

(1) Unsupervised evaluation (section 4); these tasks measure
the expressivity and learnability of the learned representation space
via embedding models.

(2) Supervised evaluation (section 5); these tasks measure the
extent to which a model can distinguish between different classes
of entities.

(3) Semantic Similarity evaluation (section 6); these tasks
evaluate a model’s ability to position similar items in close prox-
imity within the embedding space, while ensuring dissimilar items
are placed farther apart from each other. This evaluation comprises
of two subtasks:

(3.1)EventCorrelation (section 6.1); correlating and connecting
related security events is crucial for identifying potential threats
and understanding the broader context of security incidents. This
task assesses the capability of embedding models to accurately
associate and link related events based on their representations.

(3.2) User Behavior Profiling (section 6.2); understanding and
profiling user behavior patterns is essential for detecting insider
threats and identifying potential policy violations. This task evalu-
ates the performance of embedding models in capturing and repre-
senting user behavior patterns from security data.

(4) Downstream evaluation of Anomaly Detection (sec-
tion 7); this task evaluates if embedding models can enhance anom-
aly detector’s ability to identify anomalous security events and user
activities within the security environments. The datasets for this
task include a mostly benign security log dataset, and a synthetic
attack dataset.

While the proposed evaluation benchmark is designed to be gen-
eral and applicable to any security data, in this paper, we leverage
real-world AWS security telemetry logs to demonstrate its effi-
cacy. The selected AWS security logs encompass a diverse range
of services, configurations, and security event types. This diversity
ensures that the evaluated models are exposed to a wide spectrum
of scenarios, enabling them to generalize effectively to real-world
deployments. We utilize the developed evaluation benchmark to
measure the quality of encoder-based language models fine-tuned
on AWS log data. As a baseline, we employed RoBERTa-large [15],
a pre-trained language model, and performed domain adaptation
by continuing its pre-training on CloudTrail, one of the AWS se-
curity telemetry logs. The comprehensive comparison results are
presented in Section 8. Throughout this paper, we refer to the model
that is adapted to security logs as log-adapted, and the model which
is not adapted as non-adapted.

In Section 9, we delve into a crucial characteristic of security
data: its dynamic nature. We emphasize that our benchmark must
be dynamically re-created at a defined cadence to account for the
ever-evolving landscape of security telemetry data. The dynamic
nature of security data necessitates a proactive approach to ensure
the continuous relevance and accuracy of our evaluation bench-
mark. By acknowledging and addressing this dynamic aspect, our
benchmark maintains its robustness and adaptability, enabling it to
consistently provide a reliable and comprehensive assessment of

embedding models’ performance in the face of the rapidly changing
security landscape. This proactive approach ensures that the bench-
mark remains a valuable resource for researchers and practitioners,
fostering the development of more resilient and effective solutions
for securing cloud environments and safeguarding sensitive data.

2 RELATEDWORK
2.1 Large Language Models
Large language models [2, 25] have emerged as powerful tools
for learning dense vector representations of discrete entities, such
as words, phrases, or tokens. These representations, known as
embeddings, capture semantic and contextual information, enabling
various natural language processing (NLP) tasks to be performed
more effectively. Among the different types of embedding models,
transformer-based models [22, 25] have gained significant traction
due to their remarkable performance and ability to capture long-
range dependencies.

While embedding models have primarily been explored and ap-
plied in the NLP domain, their potential value extends to other
areas, including security analytics. In the context of security teleme-
try data, embedding models can be leveraged to learn meaningful
representations of security entities, such as user identities, resource
names, IP addresses, and event types. These learned embeddings can
capture the intricate relationships and patterns present in security
logs, enabling more effective anomaly detection, threat identifica-
tion, and user behavior profiling.

2.2 Cybersecurity
The security domain has witnessed a significant surge in the adop-
tion of machine learning techniques to tackle various challenges,
including anomaly detection [19, 20], IP reputation analysis [13],
and threat identification [12]. Traditional rule-based and signature-
based approaches, while valuable, are often limited in their ability
to keep pace with the ever-evolving landscape of cyber threats. Ma-
chine learning, with its ability to learn from data and adapt to new
patterns, has emerged as a powerful tool for enhancing security
analytics and fortifying defenses against sophisticated adversaries.

Anomaly detection, for example, is a critical task in the security
domain, as it enables the identification of deviations from normal
behavior, which may indicate potential threats or compromised
systems. Previous works [9], have proven effective in learning the
characteristics of normal behavior from security telemetry data and
flagging anomalous patterns. IP reputation analysis [13] is another
area where machine learning has made significant contributions.
By analyzing various features associated with IP addresses, such as
geolocation, autonomous system numbers, and historical behavior,
machine learning models can classify IP addresses as malicious or
benign. This capability is crucial for identifying potential sources
of attacks, and implementing access controls.

2.3 Benchmarks
Evaluation benchmarks have played a pivotal role in driving progress
and enabling objective comparisons in the field of NLP. Benchmarks
such as (Super)GLUE [26] and Big-BENCH [24], along with eval-
uation frameworks [6] have been instrumental in advancing NLP
research and development.
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While these benchmarks have proven effective in the NLP do-
main, the field of cloud security lacks comprehensive and widely ac-
cepted evaluation benchmarks. As cloud computing environments
generate vast amounts of security telemetry data, there is a pressing
need for standardized benchmarks to assess the performance of
large language models trained on this data. These models aim to
learn meaningful representations of security entities, events, and
behaviors, enabling advanced analytics, anomaly detection, and
threat identification.

The successful adoption and impact of these benchmarks in the
NLP field highlight the potential value that a dedicated evalua-
tion benchmark could bring to the domain of cloud security. By
providing a standardized platform for evaluation, researchers and
practitioners could objectively assess the performance of their em-
bedding models, identify areas for improvement, and facilitate the
development of more robust and effective security solutions tailored
to the unique challenges of cloud computing environments.

3 TASKS AND EVALUATION
To offer a holistic evaluation, our benchmark considers multiple
facets. First, it encompasses both upstream evaluations, through
unsupervised tasks (section 4) and semantic similarity assessments
(section 6), as well as downstream evaluations, including supervised
tasks (section 5) and anomaly detection (section 7). This compre-
hensive approach examines the quality of entity representations
from various vantage points.

Secondly, the benchmark assesses entities not only in isolation
through non-contextual embeddings but also in the context of other
entities, enabling an understanding of how representations perform
in practical situations. For instance, it evaluates the embedding of a
service in the context of the user identity that utilized that service.

Thirdly, our benchmark considers a wide range of security enti-
ties spanning different granularities. Table 2 lists down the entities
our evaluation benchmark utilizes. We focused on the most crucial
entities that either have a direct application in downstream use-
cases or are of immediate importance from a subject matter expert’s
perspective.

Although the proposed methodology is intentionally designed to
be generic and applicable to any security data logs, we strategically
leverage AWS CloudTrail logs as the primary data source for ex-
tracting and constructing the various benchmark tasks. CloudTrail
furnishes a comprehensive audit trail that encompasses activities
across AWS services and resources, enabling us to carve out realistic
and practical test cases. Table 1 presents a comprehensive listing of
all our evaluation tasks.

4 UNSUPERVISED EVALUATION TASKS
The following tasks are unsupervised [4, 16] and do not need a
labelled evaluation dataset.

4.1 Cluster Learnability (CL)
This task [16] evaluates the learnability of representations. A higher
Cluster Learnability (CL) score indicates that the learned represen-
tation is more effective at separating distinct clusters in the input
data space. The CL metric measures the learning speed of a K-
Nearest Neighbor (KNN) classifier trained to predict labels obtained

by clustering the representations using K-means. The process is as
follows:

(1) Pick the hyper-parameters 𝑘 and 𝑘′ as number of clusters,
and number of neighbors. Let 𝑥𝑖 denote the representations
of 𝑖−th data point.

(2) Perform k-means clustering on the dataset to obtain k clus-
ters. Assign a cluster ID to each data point 𝑥𝑖 as its label,
denoted as 𝑦𝑖 . This cluster ID serves as the ground truth
label for the corresponding data point within the context of
this clustering task.

(3) Run KNN classification on each datapoint in a prequential
manner to obtain a predicted label through majority voting.
Specifically, for a given data point (𝑥𝑖 , 𝑦𝑖 ), consider all data
points with indices less than 𝑖 , denoted as 𝑥 𝑗 | 𝑗 < 𝑖 , and apply
the KNN algorithm to these data points to determine the
majority class label. This majority class label will be the
predicted label 𝑦𝑖 for the data point 𝑥𝑖 .

(4) Then the CL metric would be 𝐶𝐿 = 1
𝑁

∑𝑁
𝑖=1 [𝑦𝑖 = 𝑦𝑖 ]

The "prequential" approach, also known as the "test-then-train"
method, is a way of evaluating the performance of a machine learn-
ing model, such as KNN, in an online learning setting. In this task,
through the prequential manner of KNN computation, the model is
evaluated and updated sequentially, one instance at a time, using a
stream of data. Since the data is unlabeled, this method uses clus-
tering in step (2) to synthetically generate labels i.e. cluster ids, and
use them to compute the speed of cluster learnability in an online
(or prequential) manner.

4.2 Expressiveness
This task assesses expressiveness of representations through a met-
ric called Intrinsic Dimension (ID) [16]. This metric is based on the
intuition that as more and more fine-grained categories emerging
in the representation space, we expect the manifold complexity
to go up, which can be characterized as the number of parame-
ters needed to describe the representation manifold without losing
information[16]. While inferring intrinsic dimension is a challeng-
ing problem in its own, [16] uses nearest neighbors to infer ID. The
metric computation process is as following:

(1) Let 𝑧1, · · · , 𝑧𝑁 be 𝑁 data points.
(2) For each datapoint 𝑧𝑖 , compute the distance to its𝑘-th nearest

neighbor, i.e. 𝑟𝑖𝑘 = 𝐷𝑖𝑠𝑡 (𝑧𝑖 , 𝑁𝑁 (𝑧𝑖 , 𝑘))
(3) Define 𝜇𝑖 = 𝑟𝑖2/𝑟𝑖1 as ratio of distances for 𝑖-th datapoint.
(4) Sort 𝜇𝑖 ascendingly, i.e. 𝜇1 ≤ · · · ≤ 𝜇𝑁 and estimate the

cumulative distribution as 𝐹𝑒𝑚𝑝

𝑖
= 𝑖/𝑁 .

(5) Fit a straight line on the dataset {(log 𝜇𝑖 ,− log(1−𝐹𝑒𝑚𝑝

𝑖
))}𝑁

𝑖=1
in two dimensional plane.

(6) The slope of the line is the estimated ID.

To gain an intuition on the approach, assume that data points
are sampled on a manifold with intrinsic dimension 𝑑 . It can be
shown [5] that under the assumption of local uniformity, 𝜇𝑖 fol-
lows a Pareto distribution with parameter 𝑑 + 1 on [1,∞), i.e.
𝜇𝑖 ∼ 𝑃 (𝜇𝑑) := 𝑑𝜇−(𝑑+1) . The cumulated distribution associated
with 𝑃 (𝜇𝑑) is 𝐹 (𝜇) = 1 − 𝜇−𝑑 , and we can use this to estimate 𝑑 .
The way authors[16] estimate it, as described in above steps, is
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Table 1: Our evaluation benchmark tasks

Evaluation Type Task SubTask

Upstream

Unsupervised Cluster Learnability
Expressiveness

Semantic Similarity

User behavior profiling

Service Linked Roles
Account ID
Principal ID
Account ID + Principal ID
account ID + Username

Event correlation
Service
Service & API
Whole Event
IP

Downstream

Supervised

IP Reputation
Risk API
Suspicious ASNorg
Prod User Identity

Anomaly Detection

Overall Detection Volume
Attack Detection Volume
Benign ASN Detection
Malicious ASN Detection

Table 2: AWS security entities used in our benchmark

Entity Description

accountId An account number uniquely identifying a user account.

username A single sentence description that represents the user or entity associated with the recorded
security event or activity.

userIdentity A pair consisting of an accountId and a username.

service A service or resource, such as S3, from which the security event originates.

API The name of a specific API or operation within an service, e.g., ListS3Buckets() in the S3 service.

event A timestamped record capturing a user’s interaction with AWS, containing the request and response
details.

IP The Internet Protocol (IP) address associated with the security event.

ASNorg The Autonomous System Number (ASN) organization associated with the IP address involved in
the security event.

PrincipalId A unique identifier that represents the entity (user, role, or service) responsible for performing an
action or operation.

through linear regression on the empirical cumulate of the distri-
bution i.e. 𝐹𝑒𝑚𝑝

𝑖
= 𝑖/𝑁 .

5 SUPERVISED EVALUATION TASKS
This section encompasses classification tasks involving security
entities present in table 2. The motivation for these tasks is that
a log-adapted model should learn informative representations for
each of these entities, and enable accurate discrimination across
various classes.

5.1 Classification on IP Reputation
This task classifies an IP address to either benign or malicious. The
motivation for this task is that benign and malicious IPs have very
different behaviors that could be captured by the security logs.
To enable the binary classification, we use output of an internal
labelling tool as target labels. This tool assigns +1 if an IP is a threat
and assigns 0 otherwise.

A snippet of the dataset is as follows, where IP addresses are
masked for privacy, where the input and the corresponding label
are separated by comma:
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• 100.200.300.400, 0
• 100.500.600.700, 1

5.2 Classification on Risk API
This task classifies an API on their risk category (low, mid, high).
The rationale for this task is that the risk level of an API can be
captured by the sets of events it happens in. A snippet of the curated
dataset for this task is as follows:

• CreateChangeSet, MediumRisk
• ExecuteChangeSet, HighRisk
• UpdateStack, HighRisk

5.3 Suspicious ASNorg or IP address
This task classifies a given IP address/ASNorg as suspicious or
not based on a static list. The suspicious ASNorgs are ones we’ve
observed attacks frommore often than others. The rationale for this
task is that the suspicious ASNorg/IPs will have different behavior
than benign IPs, and embedding model trained on security logs
should be able to catch that distinction. A snippet of the dataset is
as following, where names of ASNorgs are masked:

• asnOrg:asn-org-name, 1
• asnOrg:another-asn-org-name, 0

5.4 Production vs Non-production User Identity
Detection

This is a binary classification task inwhichwe classify a userIdentity
which is a pair of (accountId, username) as either internal produc-
tion or non-production. We make sure the accountId is unique in
the training and testing data to avoid potential memorizing. We
obtain ground truth labels from a list of internal accounts.

6 SEMANTIC SIMILARITY TASKS
The semantic similarity tasks are designed to quantify how well
domain-specific semantics are learned via an embedding space or,
equivalently, a model producing these embedding vectors. These
tasks assess whether the model can infer relationships within the
representation space, via semantic similarity, that are meaningful
to a subject matter expert. These benchmark tasks can be used to
evaluate and compare various language models, including generally
pre-trained base models and various domain-adapted variants. The
domain-adapted variants incorporate pre-training from security log
sources. Performance across these tasks will be used to determine
the degree to which models have learned useful, domain-specific
relationships.

A dataset for each semantic similarity task comprises a list of
(anchor, positive, negatives) triplets. An anchor is a reference data
point that is observed in the training data. To enhance the quality
and diversity of our training data, wemeticulously selected a diverse
set of anchor points (see section 6.3). The corresponding positive
example is also observed in the training data, and selected by a
process designed to ensure they are similar to the anchor. The
negative example is selected to be semantically dissimilar to the
anchor, but ideally not too easy for the model to distinguish from a
positive.

Semantic similarity evaluation encounters two task categories:
event correlation, and user behavior profiling, which we de-
scribe below in more detail.

6.1 Event Correlation
This task measures the efficacy of an embedding model at capturing
associations between different events happened for the same users.
Overall principle is that an embedding model is supposed to assign
a higher similarity score to the events that were triggered by the
user, and a lower similarity score when one of the events hasn’t
been triggered by a user and therefore is an outlier for this user. To
measure this similarity, we define anchor, positive, and negative as
follows:

+ anchor = (accountId, username, event𝑖 ) where the (accountId,
username) has interacted with event𝑖

+ positive = (accountId, username, event𝑗 ) where the (accountId,
username) has interacted with event𝑗 and event𝑖 ≠event𝑗

+ negative = (accountId, username, event𝑘 ) where (accountId,
username) has not interacted with event𝑘 .

We define the events at different levels of granularity, where
each granularity level corresponds to a specific semantic similarity
sub-task, described below.

User: Service. This task measures the efficacy of an embedding
model at capturing associations between user identities i.e. (accoun-
tId, username) pair and AWS services. Note that, this task limits
users’ behaviors to only the services they have interacted with in
AWS. In this task, an input anchor/positive/negative instance takes
the form (accountId, username, eventSource).

User: Service and API.. This task aims to assess the efficacy
of a model at capturing associations between user identities and
service and API pairs. In this task, an input anchor/positive/negative
instance takes the form (accountId, username, service, API).

User: Whole event. In the previous two tasks, we compare the
contextual representations of a service, or a (service, api) pair , in the
context of the userIdentity i.e. (accountId, username). In this task,
an anchor/positive/negative instance takes the form (accountId,
username, event).

User: IP.. This task considers IP instead of event, and assesses
whether two distinct IP which a user was connecting from are
more similar to each other in the embedding space, than to an IP
unrelated to this user.

6.2 User Behavior Profiling
This category of tasks evaluates the performance of embedding
models in capturing and representing user behavior patterns from
security telemetry data, which is essential for detecting insider
threats and identifying potential policy violations. This task consists
of the following subtasks:

Role Similarity Identification. The goal of this task is to as-
sess a model’s ability to identify similar roles or privileges that
are used across multiple entities (e.g., accounts, organizations, or
users) within a security dataset. Certain roles or privileges are often
pre-defined and assigned to specific services, applications, or user
types within an organization or system. Since these pre-defined
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roles are installed, managed, and used exclusively for a particular
purpose, they tend to have identical or very similar permissions
and usage patterns across different entities. This makes them a
good candidate for this task. The motivation for this task is that
the log-adapted models are expected to assign higher semantic
similarity scores to the pre-defined roles or privileges from the
same service, application, or user type across different, unrelated
entities. In contrast, the adapted models should assign lower scores
to pre-defined roles or privileges associated with different services,
applications, or user types.

Let 𝑟 denote a pre-defined role or privilege, then each example
in the data is as follows:

+ anchor = (accountId1, 𝑟𝑖 ) where 𝑟𝑖 occurs with accountId1 in
the training data

+ positive = (accountId2, 𝑟𝑖 ) where 𝑟𝑖 occurs with accountId2 in
the training data

+ negative = (accountId3, 𝑟𝑘≠𝑖 ) where 𝑟𝑘 does not occur with
accountId1 in the training data

That is, the anchor and the positive are entityIds that are asso-
ciated with the same pre-defined role or privilege in the data, and
the negatives are all other accountId + role/privilege pairs in the
evaluation dataset, where the role or privilege is different from the
positive role or privilege.

User Similarity by Service and API Usage. The goal of this
evaluation task is to measure similarity of representations of users
based on service and API usage, such that users with similar service
and API usage will have high similarity scores, and users with very
different Service and API usage will have low scores. This will allow
us to measure how well user representations can capture a user’s
behavior with respect to the services and APIs they use.

The ability to identify users exhibiting similar behavior patterns
is valuable for multiple security use cases, such as detecting mali-
cious activity, mitigating false positives, and clustering principals
based on their common activities and resource interactions.

For this task, we define anchor as a user with enough number of
events in the training data, a corresponding positive as a user who
has similar service and API usage to anchor, and a corresponding
negative as a user who has dis-similar service and API usage to
anchor. A user is defined in four distinct ways:

• Account ID represents the AWS account associated with
the user,

• Principal ID is a unique identifier for the user within the
account,

• A combination of Account ID and Principal ID provides
a more granular representation of the user,

• A combination of Account ID and Username incorpo-
rates the user’s chosen name or alias alongwith their account
information. Note that this case essentially extends the Ser-
vice Linked Roles task over all usernames presented in the
data.

We capture the service and API usage by constructing an event
bag for each user as a list of (service, API, volume) where volume
is the logarithmic quantization of the (userIdentity, service, API)
triplet’s volume. We consider two user similar/positive pair, if their
constructed event bags have high Jaccard similarity. Otherwise they
are dis-similar.

6.3 Sampling Data for Evaluation
One of the key constraints on the evaluation dataset is its size.
While the number of events in security logs can reach billions in
one hour, it would be infeasible to run model inference on a dataset
of that order. For this matter, we constraint the dataset size to be
not more than one thousand of events (e.g. not more than 1000
anchor-positive-negative instances for a semantic similarity task).
Since the evaluation dataset comprises a small fraction of the whole
data, uniform sampling of anchors could lead to a biased evaluation
towards the over-represented instances, and developing a proper
sampling mechanism becomes essential.

To deal with the sampling problem, we employ a sampling mech-
anism which accounts for data diversity. The mechanism is based
on selecting diverse data in a metric space. A metric is defined
differently for a different task: for example, for User Behavior Pro-
filing (section 6.2) the metric is defined as the Jaccard distance of
the event bags between users.

Having a metric defined on an entity space (e.g. event-based
Jaccard distance on a user space), we construct the anchor set for
a task as the metric 𝑘-centers [8], that is we perform clustering in
a metric space, and use the cluster centroids as the anchors. More
specifically, we employ a greedy selection of cluster centers by a
farthest-first traversal [7]: assume we have a set of cluster centers C,
then in the next iteration we add as a new center the datapoint for
which the maximum distance to the closest point in C is minimized.

In this way, we build a set of anchors 𝐶 of size 𝑘 (in practice, we
set 𝑘 = 1000), so that the anchors comprise the diverse set of entities
spanning the overall space of entities. After anchor selection, for
a given anchor in C, we select negatives as a entities from the
original space which have low similarity to anchor. Similarly, we
select positives as entities from the original space which have high
similarity to the anchor.

7 DOWNSTREAM EVALUATION: ANOMALY
DETECTION FINDING QUALITY

Identifying anomalous events within security systems has been
a challenging problem due to several reasons including but not
limited to the followings: (1) high-dimensional and heteroge-
neous data: security systems often deal with large volumes of
high-dimensional data from various sources. This data can be het-
erogeneous, consisting of structured and unstructured data, making
it difficult to process and analyze. (2) imbalanced and evolving
data distributions: in security contexts, anomalous events are
typically rare occurrences, leading to highly imbalanced data dis-
tributions. Additionally, the nature of anomalies can evolve over
time as new threats and attack vectors emerge. (3) lack of labeled
data: obtaining labeled data for anomalous events is often difficult
and costly. and (4) high-cardinality categorical data: security
data frequently includes high-cardinality categorical features, such
as user IDs, IP addresses, and event types. Handling these high-
dimensional and sparse categorical features can be computationally
expensive and may require specialized techniques for effective rep-
resentation and modeling.

To address these challenges, the state-of-the-art anomaly detec-
tion (AD) models consist of an encoder and a decoder. The encoder
receives embeddings of selected entities such as user IDs, resource
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names, network identifiers, and action types as input and passes
them through further encoding layers. The decoder reconstructs a
subset of the input entities from the latent representations condi-
tioned on the rest of the input. Finally, a categorical cross-entropy
loss is computed between the reconstructed entity and the original
input entity.

While the AD models can use randomly initialized embeddings
for their inputs and exhibit reasonable effectiveness, the primary ob-
jective of this task is to assess whether pre-trained representations
can enhance the detection capabilities of AD models.

For this task, we use an autoencoder-based AD model that takes
features related to user profile such as accountId and username, and
features related to user activity such as service and API as input.
We then compute the following two subtasks:

First, we compute the total volume of the predicted anomalous
events on a new day conditioned on the assumption that the behav-
ior on the prior 45 days are normal activities. Under this assumption,
the total volume should be relatively low if the model is correctly
specified and trained, since we expect most events to be normal
user activities.

Second, to assess the model’s sensitivity to malicious events, we
generate a synthetic malicious dataset based on attack templates
from Pacu: The Open Source AWS Exploitation Framework [23], and
evaluate the model’s ability to detect such potential attacks.

8 EXPERIMENTS AND RESULTS
To demonstrate the efficacy of the benchmark, we employed RoBERTa-
large, a pre-trained language model, as our starting point and per-
formed domain adaptation by continuing its pre-training on Cloud-
Trail, one of AWS security telemetry logs. We refer to the original
RoBERTa-large model as the non-adapted model, while the domain-
adapted version, fine-tuned on CloudTrail logs, is referred to as
the log-adapted model. We split our results into three tables: table 3
summarizes the results of unsupervised, and supervised tasks; while
table 4 states the result for semantic similarity tasks, and table 5
lists down the results for anomaly detection task.

For the unsupervised task, we computed the non-contextual em-
bedding of IP as a candidate security entity by mean pooling its
output from the model. We report CLID metric which is a summa-
tion of Cluster Learnability(CL) and Intrinsic Dimensionality(ID).
The higher the CLID value, the greater the expressivity and learn-
ability of the learned embedding space.

For supervised evaluation tasks, we developed a classification
head on top of the language model. While the classification head
can be linear or non-linear we chose a two layer fully connected
networkwith ReLU activation function.We created train set and test
set consistent with the pretrain data format, and embeded the input
using the language model and mean pooling option. We trained the
classifier for 10 epochs, and evaluated its performance on the test
set after every epoch. For each task, we record the highest Area
Under the Receiver Operating Characteristic (AUROC) score.

For semantic similarity evaluation tasks, we report AUROC. For
each subtask, we collected 1000 anchors, where each anchor has
one corresponding positive, and 10 corresponding negatives. To
compute the AUROC score, we calculated the cosine similarity
between the anchor and positive example, as well as the mean

cosine similarity between the anchor and the 10 negative examples.
These similarities provide the probabilities that a positive example
(and similarly, a negative example) belongs to the anchor class. We
then compute the AUROC score by averaging these probabilities
over all examples in the dataset.

The results presented in tables 3 and 4 demonstrate that the
log-adapted model achieves up to 20% performance improvement
in both unsupervised and supervised tasks, and more than 100%
improvement in semantic similarity tasks, when compared to the
non-adapted RoBERTa-large. This significant improvement high-
lights the model’s capability to effectively capture and leverage the
semantic information embedded within the CloudTrail logs. Conse-
quently, the model exhibits remarkable proficiency in accurately
classifying entities, as evidenced by its strong performance in the
supervised evaluation tasks. Additionally, the log-adapted model
can position anchor and positive examples closer together in the
semantic space, while separating anchor and negative examples,
thereby excelling in semantic similarity tasks.

For the downstream anomaly detection task, the primary objec-
tive is to assess whether pretrained representations can enhance
the precision and recall of anomaly detection models. To achieve
this, we generate three types of representations: 1) random repre-
sentations for each entity, 2) representations from a log-adapted
model, and 3) representations from a non-adapted model. For each
case, we feed the respective entity representations into the AD
model, resulting in three distinct AD model variants:

(1) Random-init AD (using random representations),
(2) Log-adapted AD (using representations from a log-adapted

embedding model),
(3) Non-adapted AD (using representations from a non-adapted

model).

As shown in table 5, we observe that log-adapted AD model has
improved sensitivity for malicious events compared to the non-
adapted AD model. Specifically, we observe 0.9% higher detection
volume from the synthetic attack dataset, as compared to non-
adapted model which has 4.5% lower detection volume. In addition,
the log-adapted AD model has a 35.7% lower detection volume
from a largely benign set of CloudTrail data, as compared to the
non-adapted AD which has 32.2% lower detection volume.

9 DYNAMIC BENCHMARKING
A crucial characteristic of security log data is its dynamic nature.
New accounts and users are continuously introduced into the cloud
environment on a daily basis, while others cease to utilize the
service. To accommodate these fluctuations, both the log-adapted
model and benchmark datasets should be periodically recomputed
at a defined cadence, ensuring their relevance and accuracy in
responding to the ever-evolving landscape.

Figure 1 illustrates the evaluation results where the benchmarks
(Event Correlation: Service+API, and User Behavior Profiling: Ac-
count+Principal) are recomputed daily for seven consecutive days.
The figure clearly demonstrates that the log-adapted model consis-
tently outperforms the non-adapted model. Since the non-adapted
model is static, the daily variance in its metrics can be attributed to
data drift. In other words, the daily fluctuation in the metric for the
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Table 3: Unsupervised and Supervised Evaluation Results

Unsupervised Supervised

Model CLID IP Reputation API Risk UserIdentity cls

Non-Adapted 12.81 0.68 0.64 0.61

Log-Adapted 15.46 0.82 0.70 0.71

Table 4: Semantic similarity Evaluation Results

Event Correlation User Behavior Profiling

Model Service Service+
API

Whole
Event IP SLR Account Account+

Username Principal Account+
Principal

Non-Adapted 0.52 0.50 0.77 0.58 0.63 0.48 0.78 0.54 0.54

Log-Adapted 0.63 0.66 0.88 0.6 1.0 0.58 0.89 0.64 0.60

Table 5: Downstream Anomaly Detection Evaluation Results

Model Overall Detection
Volume

Attack Detection
Volume

Random-init AD 4594 1218

Non-Adapted AD 3117 (-32.2%) 1163 (-4.5%)

Log-Adapted AD 2974 (-35.7%) 1229 (+0.9%)

Figure 1: Dynamic evaluation with daily updated bench-
marks

non-adapted model is caused by the benchmark version, specifi-
cally the introduction of a new set of users and a new set of actions
performed by users on a given day compared to the previous one.

In practice, we employ the non-adapted baseline for daily bench-
marking to monitor any sudden, unexpected changes in the log-
Adapted model’s performance. If there is a significant deviation in
the metric difference between the two models, we trigger an alert
and debug the training process for the log-adapted model. This ap-
proach allows us to proactively identify and address any potential
issues, ensuring the model’s reliability and consistent performance.

10 CONCLUSION AND FUTUREWORK
The proposed evaluation benchmark for security datasets repre-
sents a significant step towards advancing the field of security
analytics. By providing a comprehensive and standardized frame-
work for evaluating embedding models trained on security logs,

this benchmark addresses a critical gap in the research community.
The benchmark’s diverse set of tasks, including anomaly detection,
event correlation, and user behavior profiling ensures a holistic
assessment of the state-of-the-art embedding models.

As part of future work, we can enhance the current benchmark
by incorporating additional tasks such as information retrieval
and summarization. Summarization tasks could involve generating
concise summaries of security incidents or events based on the
learned embeddings, which would be valuable for security analysts
to quickly grasp the essence of complex situations. Information
retrieval tasks, on the other hand, could involve querying the secu-
rity logs and events using natural language queries, and retrieving
relevant entries based on the learned embeddings. This would en-
able security analysts to efficiently search and retrieve specific
information from large volumes of security data.
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