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ABSTRACT
The evaluation of synthetic data generation is crucial, especially in
the retail sector where data accuracy is paramount. This paper in-
troduces a comprehensive framework for assessing synthetic retail
data, focusing on fidelity, utility, and privacy. Our approach differ-
entiates between continuous and discrete data attributes, providing
precise evaluation criteria.

Fidelity is measured through stability and generalizability. Sta-
bility ensures synthetic data accurately replicates known data dis-
tributions, while generalizability confirms its robustness in novel
scenarios. Utility is demonstrated through the synthetic data’s effec-
tiveness in critical retail tasks such as demand forecasting and dy-
namic pricing, proving its value in predictive analytics and strategic
planning. Privacy is safeguarded using Differential Privacy, ensur-
ing synthetic data maintains a perfect balance between resembling
training and holdout datasets without compromising security.

Our findings validate that this framework provides reliable and
scalable evaluation for synthetic retail data. It ensures high fidelity,
utility, and privacy, making it an essential tool for advancing retail
data science. This framework meets the evolving needs of the retail
industry with precision and confidence, paving the way for future
advancements in synthetic data methodologies.
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1 INTRODUCTION
In the rapidly evolving field of data science, the evaluation of syn-
thetic data generation frameworks has become paramount, espe-
cially within the retail sector. This paper introduces a comprehen-
sive framework for assessing synthetic retail data, focusing on three
critical dimensions: fidelity, utility, and privacy. Our framework
distinguishes between continuous and discrete attributes within
retail datasets, providing clear methodologies for their evaluation.

Firstly, fidelity is evaluated through stability and generalizability.
Stability measures how well synthetic retail data replicates known
data distributions, highlighting the robustness of models in familiar
scenarios. Generalizability, on the other hand, assesses the per-
formance of synthetic data in novel contexts, ensuring that the
generated data can effectively extend beyond its training parame-
ters. This is particularly important in retail, where market trends
and consumer behavior can shift rapidly.

Secondly, the utility of synthetic retail data is scrutinized by
its applicability to real-world tasks. In the retail sector, accurate
demand forecasting and dynamic pricing are pivotal for operational
efficiency and profitability. Our evaluation framework demonstrates
how synthetic datasets can effectively support these core functions,
making them indispensable for predictive analytics and strategic
decision-making in retail.

Finally, privacy is assessed using Differential Privacy and related
metrics. We compare the proximity of synthetic datasets to both
training and holdout datasets to ensure balanced privacy guarantees.
A well-balanced synthetic dataset should approximate both datasets
equally, indicating robust privacy protection without compromising
data utility. This aspect is critical in retail, where customer data
privacy is a significant concern.

We apply our framework to evaluate generative AImodels trained
with the Complete Journey dataset [15]. Our results affirm that our
evaluation framework provides a robust pipeline for large-scale
assessments of synthetic retail data generation models. This frame-
work not only ensures high fidelity and utility but also maintains
stringent privacy standards. Consequently, it offers a solid foun-
dation for future improvements in synthetic data generation and
evaluation methodologies within the retail sector.

This paper concludes that with our framework, synthetic retail
data can be reliably utilized for various applications, offering a
scalable solution for the ever-growing demands of data privacy and
utility in retail data science.
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1.1 Background and Motivation
In the retail industry, the challenges of data privacy and availabil-
ity are significant obstacles. Synthetic data, which is artificially
generated rather than obtained from real-world events, provides a
compelling solution to these issues. One primary challenge in retail
is protecting customer privacy while leveraging data for analysis
and decision-making. Synthetic data addresses this by mimicking
real data without exposing sensitive customer information, and
maintaining statistical properties and patterns found in actual data.
This allows retailers to perform robust analyses and model training
without risking data breaches or violating privacy regulations.

Moreover, obtaining large volumes of high-quality data can be
difficult, especially when dealing with new products or services
where historical data is sparse or non-existent. Public datasets are
notably smaller than standard industry datasets. They are generally
collected under biased and often undisclosed marketing policies,
and they lack many critical fields needed for accurate customer
behavior modeling[14]. Moreover, business constraints and fair-
ness concerns restrict the potential for aggressive experimentation
across the marketing mix. Synthetic data generation overcomes
these by creating abundant and varied datasets that reflect poten-
tial future scenarios or underrepresented cases. This capability is
crucial for training machine learning models, which require large
datasets to perform effectively. Additionally, synthetic data can
help mitigate biases present in real data, leading to more fair and
accurate models.

1.2 Objectives and Contributions
Developing a robust evaluation framework for synthetic data in
retail is essential to ensure the validity and utility of the data. With-
out rigorous evaluation, synthetic data may fail to accurately reflect
the complexities of real-world scenarios, leading to misleading in-
sights and poor decision-making. A strong evaluation framework
involves several critical components: assessing the statistical sim-
ilarity between synthetic and real data, evaluating the impact on
model performance, and ensuring that synthetic data preserves
essential patterns and relationships. Thus, we propose a standard-
ized evaluation framework for retail synthetic datasets from three
aspects: fidelity, utility, and privacy.

Such a framework (Figure 1) ensures that synthetic data is not
only statistically similar to real data but also useful for practical
applications in the retail sector. This process helps identify any
discrepancies and areas where synthetic data may fall short, guid-
ing improvements in data generation methods. Ultimately, a robust
evaluation framework builds trust in synthetic data, making it a
reliable resource for retailers. In this way, we ensure a safe and scal-
able way to generate high-quality synthetic data while maintaining
privacy compliance.

2 RELATEDWORK
2.1 Existing Evaluation Frameworks
Several general frameworks have been proposed to gauge the effi-
cacy of synthetic data previously. A sample-level metric framework
evaluates generative models through fidelity and utility lenses, facil-
itating the identification of discrepancies and similarities between

real and synthetic datasets [1]. Another methodology emphasizes
auditing and generating synthetic data with controllable trust trade-
offs, allowing customization based on specific requirements [5].
Further exploration of synthetic data generation discusses its bene-
fits and limitations across various contexts, particularly in creating
a practical approach for deployment [22].

Fidelity assessment ensures synthetic data retains the essential
characteristics and patterns of real data. Previous work proposed a
holdout-based empirical assessment method for mixed-type syn-
thetic data, highlighting the importance of maintaining the statisti-
cal properties and variability inherent in the original dataset [30].
On the metric aspect, Sajjadi et al introduced a definition of preci-
sion and recall for distribution and quantified distribution similarity
not just with one-dimensional score, like total variation [35].

Utility evaluation focuses on the synthetic data’s performance
in downstream tasks. Xu et al. established a basis of relevant utility
theory in a statistical learning framework and introduced metrics
of generalization and ranking of models trained on synthetic data
[48]. It considers two utility metrics: generalization and ranking of
models trained on synthetic data. There was also empirical work,
for example, emphasizing generative model selection based on
performance in fraud detection[13]. Additionally, Hsieh et al. (2024)
adopted a data-centric perspective to improve both the fidelity and
utility of synthetic credit card transaction time series [20]. Liu et
al. explore utility in dynamic pricing models, demonstrating how
synthetic data can support robust pricing strategies in fluctuating
market conditions [26].

Privacy is a central concern in synthetic data generation. A for-
mal framework for detecting data-copying in generative models
ensures synthetic data does not replicate real data points [6], where
the author also provides the requirement of minimum sample size
for reliable detection. Meehan’s work proposed a three-sample test
to solve the same issue of data-copying in generative models [27].
BadGD addresses the vulnerabilities of gradient descent algorithms
through strategic backdoor attacks to safeguard data privacy [42].
Furthermore, Chen et al. systematically summarize all approaches
for differentially private data publishing to conduct reproducible
downstream analysis while preserving data privacy [10]. Tools like
TAPAS provide adversarial privacy auditing. A review of privacy
measurement practices for tabular synthetic data includes a com-
prehensive list of privacy metrics [7], such as Differential Privacy,
k-Anonymity, Plausible Deniability, etc.

However, to our knowledge, there is no empirical work con-
ducting a full set of fidelity, utility, and privacy assessments on
generative AI models with retail transaction data.

2.2 Synthetic Data in Retail
Synthetic data can transform the retail industry by enhancing vari-
ous operational and analytical processes while ensuring customer
privacy. It enables comprehensive customer analytics and segmen-
tation without compromising personal data, aiding in the develop-
ment of targeted marketing strategies. In supply chain optimization,
synthetic data simulates different scenarios to help forecast demand,
optimize inventory, and improve logistics. Product recommenda-
tion systems can benefit from data augmentation with synthetic
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Figure 1: The framework diagram of our synthetic retail data evaluation pipeline. Section 3.1 explains the purpose andmethod to
split transaction data. Section 3.2 defines detailed metrics for fidelity assessment, i.e. Wasserstein distance, Pearson correlation,
etc. Section 3.3 defines the tasks for utility assessment, i.e. classification accuracy, product association, etc. Section3.4 explains
the metrics for privacy assessment, i.e. distance to the closest record.

datasets for extensive training, ensuring accurate and relevant rec-
ommendations that enhance customer experience. Furthermore,
synthetic data allows safe data sharing with third parties and part-
ners under privacy regulations, facilitating collaborative projects
and compliance checks without using real data, thus fostering in-
novation while safeguarding privacy.

Data practitioners have widely recognized the value of synthetic
data for accelerating the development of AI systems and started
to emphasize building generative models of the data in its raw
tabular forms, instead of modeling features derived from trans-
formed data [22, 28]. Researchers identify two different paths for
synthetic data generation. One is the black-box style of privacy-
preserving modeling techniques (such as Generative Adversarial
Networks, Variational Autoencoders, and Bayesian Networks) [44].
For example, Athey generated synthetic data for the evaluation of
causal effects estimators with Wasserstein Generative Adversarial
Networks [4]. These privacy-preserving modeling techniques are
powerful when sufficient historical data is available to learn an accu-
rate data-generating process. However, when public retail datasets
are rather scarce, the other style that needs domain knowledge
in retail shines. Statisticians simplify the complexity of real-world
data and specify structural causal models to generate synthetic data.
For example, prior work simulated either category choice or the
full life-cycle of customer shopping decisions based on a nested
logit model [2, 45].

However, no matter which technique is used for synthetic data
generation, there is currently no well-defined evaluation framework
specifically designed to assess synthetic retail data, highlighting a
crucial gap in ensuring data fidelity, utility, and privacy. The retail
industry particularly requires effective data to conduct analysis,
such as price optimization[11, 12], basket analysis [33, 40], customer
lifetime value [16, 32], and demand forecasting [17, 41]. Given the
complexity and importance of these tasks, careful evaluation of
synthetic data is essential to preserve the quality of insights derived
from these analyses, ensuring that strategic decisions are based on
accurate and reliable information.

2.3 Complete Journey Dataset
The Dunnhumby Complete Journey Dataset [15] represents a com-
prehensive and meticulously curated collection of retail transaction
data, providing deep insights into consumer purchase behaviors
and patterns. Compiled from a vast array of shopping experiences,
this dataset encompasses detailed records of customer interactions,
including basket-level transaction details, promotional influences,
and loyalty program participation. We utilize three main tables
in our paper from the dataset: (1) transaction table, (2) customer
demographics table, and (3) product hierarchy table. We merge
these three tables with schema explained in Table 1 to build the
raw data input to the proposed framework in Figure 1, and cover
the pre-processing details in section 4.1.

Variable Type Description Source

household_id integer Customer unique identifier 1 & 2
product_id integer Product unique identifier 1 & 3

day integer Transaction day 1
quantity integer Purchased units 1

... ... ...

age string Customer age group 2
household_size string Number of family members 2

... ... ...

department string Product department 3
brand string "national" or "private" 3
... ... ...

Table 1: Partial schema of merged Complete Journey dataset
as an example. In the source column (1) represents the trans-
actions table, (2) for the customer demographics table, and (3)
for the product hierarchy table. See Sec. 2.3 for full details.
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3 THE EVALUATION FRAMEWORK
In this session, we propose an empirical assessment framework to
evaluate generative AI models for retail synthetic data generation.
Our evaluationmethod is distinguished by its tripartite composition
of synthetic data Fidelity, Utility, and Privacy metrics. The defin-
ing characteristic of this method is its adaptability and model-free
nature, allowing it to be deployed independently of domain-specific
knowledge or preconceived notions. Utilizing non-parametric mea-
sures, our data-centric evaluation provides a systematic review of
an array of black-box synthetic data solutions, examining whether
generated data is practical, safe, and broadly applicable. The objec-
tive underlining this methodology is to build transparency, enhance
confidence in data generators, and further incentivize industries to
leverage synthetic data for innovation.

3.1 Train-Holdout-Eval Split
To robustly evaluate the generalizability of a data synthesizer, we
employ a random split of the available records into three distinct
datasets: a training dataset 𝑇 , a holdout dataset 𝐻 [30], and an
additional evaluation dataset 𝐸, where the evaluation dataset 𝐸 is
only used for assessing model utility as a evaluation set (Figure 1).
The training dataset 𝑇 is exclusively used to train the synthesizer,
while the holdout dataset𝐻 remains untouched during the synthetic
data generation process. By exposing only the training dataset𝑇 to
the synthesizer, we generate a synthetic dataset 𝑆 of the same size
as𝑇 . The isolated holdout dataset 𝐻 can then serve as a benchmark
to assess the synthesizer’s ability to generalize beyond the data it
was trained on.

To demonstrate the model generalizability, we compare the met-
rics obtained from both the holdout dataset 𝐻 and the synthetic
dataset 𝑆 . If the holdout dataset 𝐻 attains better metrics than the
synthetic dataset 𝑆 , the synthesizer has missed some underlying
patterns presented in the data. Conversely, suppose the synthetic
dataset S achieves superior metrics. In that case, this indicates
potential overfitting by the synthesizer to the training dataset 𝑇 .
Ideally, we aim for the metrics from both datasets to be as close as
possible, reflecting balanced generalization and reliable synthetic
data generation.

3.2 Measuring Synthetic Data Fidelity
We treat holdout and synthetic datasets as separate data sources to
evaluate fidelity metrics against the training dataset. The design of
fidelity measurement is motivated by visualizing joint distributions
and marginal distributions to discover patterns.

Similarity of Marginal Distribution One critical part of ex-
ploratory data analysis is to demonstrate the distribution of numer-
ical features. This involves plotting histograms, density plots, and
cumulative distribution functions to visualize how numerical data
is spread across different ranges. A robust generative synthesizer
must accurately learn and replicate these numerical distributions,
ensuring that the synthetic data mirrors the real-world data in
terms of central tendencies, variability, and distribution shape. Fur-
thermore, we can also derive additional features from primitive
columns and test their distribution similarities. This includes calcu-
lating ratios, differences, and other mathematical transformations
to extract business insights. By assessing the distribution of these

derived features, we can further evaluate the synthesizer’s stability
and robustness, ensuring that it captures intricate relationships and
patterns within the data. For both primitive numerical features and
derived numerical features, we report Wasserstein distance [34] to
measure distribution similarities, where the small value indicates
the synthetic dataset is closely attached to the real dataset.

Another important aspect is to check the distribution of cate-
gorical features. This involves visualizing the frequency of each
category, cross-tabulations, and bar plots to understand the dis-
tribution of categorical data. A competent generative synthesizer
must also learn these categorical distributions accurately. It should
preserve the proportions and relationships among categories, en-
suring that the synthetic data accurately represents the categorical
structures observed in the real dataset. To quantify the degree of
similarity, we compute the Jensen-Shannon distance [9] and expect
a small value as an indicator of an excellent synthesizer.

Similarity of Joint Distribution Besides capturing the distri-
bution of a single attribute, a synthesizer with high fidelity should
also be able to identify multivariate combinations and relationships
among the set of attributes, assessing how pairs of features inter-
act and co-vary. We compute the Pearson correlation matrix for
number-to-number interaction, Theil’s U matrix for category-to-
category interaction, and the correlation ratio matrix for number-
to-category interactions. To verify if the synthesizer understands
feature interactions and dependencies, we compute the L2 distance
of flattened correlation arrays between the training dataset and
the synthetic dataset or the holdout dataset. This step is vital for
applications where the relationship between variables significantly
impacts outcomes, such as customer segmentation and market
basket analysis in the retail industry. Ensuring that these joint dis-
tributions are faithfully replicated in the synthetic data guarantees
that the model maintains the integrity of multivariate relationships,
providing a more comprehensive and realistic representation of the
underlying data structure.

3.3 Measuring Synthetic Data Utility
In evaluating the efficacy of generative models for retail synthetic
data generation, a critical consideration is the preservation of Ma-
chine Learning (ML) utility. This step entails formulating a clas-
sification task 𝑓 : 𝑋 → 𝑌 using a predefined dataset, enabling a
comprehensive assessment of how well-synthesized data can repli-
cate real-world data’s utility in predictive modeling. The evaluation
framework is meticulously designed to ensure a robust comparison
of model performance on both utility and generalizability.

To achieve this, we train machine learning models separately us-
ing the training dataset 𝑇 , holdout dataset 𝐻 , and synthetic dataset
𝑆 . This approach allows us to systematically assess the performance
of each model on the same evaluation set, referred to as evalua-
tion dataset 𝐸. The model trained with 𝑇 , 𝑓𝑇 , provides a baseline
for understanding performance metrics under standard conditions.
Conversely, the model trained with 𝐻 , 𝑓𝐻 , offers insights into the
model’s behavior when exposed to unseen real-world data, thereby
indicating its generalizability. Furthermore, the model trained with
𝑆 , 𝑓𝑆 , in this evaluative procedure enables a direct comparison of
how well the generative models could replicate actual data charac-
teristics and maintain predictive accuracy.
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By testing 𝑓𝑇 , 𝑓𝐻 , 𝑓𝑆 on evaluation dataset 𝐸 and computing met-
rics like accuracy, F1, ROC, precision, and recall, we are able to
systematically quantify and compare the utility of data generated
by various generative AI models. This empirical assessment frame-
work not only facilitates a granular understanding of each model’s
performance but also highlights the strengths and limitations of
generative AI in capturing complex data patterns crucial for pre-
diction tasks in the retail sector.

3.4 Measuring Synthetic Data Privacy
Privacy is a paramount concern in the realm of synthetic tabular
data generation, primarily due to the sensitive nature of information
often contained within retail datasets. The generation of synthetic
data aims to mitigate the risk of disclosing private or proprietary
information while still enabling valuable data-driven insights. To
rigorously evaluate the privacy-preserving capabilities of genera-
tive AI models, we compute the Distance to Closest Record (DCR) ,
with L1 distance as the definition of distance between two records.
Specifically, we assess the DCR from the synthetic data 𝑆 to the
training data 𝑇 , and from the holdout data 𝐻 to the training data 𝑇 .
The DCR quantifies the likelihood of synthetic data points being
too similar to actual data points, thereby posing a privacy threat. A
high DCR value indicates effective anonymization.

Additionally, we introduce a metric termed the Closest Cluster
Ratio (CCR) further to scrutinize the privacy and generalizability
of synthetic data. The CCR measures the proportion of synthetic
data points that are closer to the training dataset compared to the
holdout dataset, ranging from [0, 1]. Ideally, the values of CCR
should be as low as possible, indicating that synthetic data points
are not a close copy of the training dataset. A CCR close to 1 sig-
nals an overfitting generative model, highlighting the necessity for
continuous refinement in synthetic data generation techniques.

By combining DCR and CCR metrics, we can provide deep in-
sights into how effectively synthetic data can protect sensitive in-
formation, thereby fostering trust and reliability in the deployment
of generative AI solutions in real-world retail scenarios.

4 EVALUATION RESULTS
To demonstrate the proposed framework (Figure 1), we conducted
an empirical assessment on the open-source Complete Journey
dataset [15] of retail transactions from frequent customers in a retail
grocery store (accessed from completejourney-py 1). The dataset
documents the purchasing patterns of more than two thousand
households over a one-year period, who frequently shop at the
retailer.

We examined 5 generative models to produce the synthetic
datasets: GAN-based tabular generative models ((1) CTGAN[47],
(2) AutoGAN) and Diffusion-based tabular generative models ((3)
TabDDPM[23], (4) StasyAutoDiff[38], (5) TabAutoDiff[38]). Specifi-
cally, we implemented AutoGAN by preparing input features with
AutoDiff [38] and training a GAN[18] using Torch [3]. Unless oth-
erwise specified, models are cloned from the cited repositories and
the training features are prepared according to encoding methods
stated in the corresponding paper.

1https://pypi.org/project/completejourney-py/

4.1 Data Description and Analysis
Data Preprocess. The raw transaction data includes approxi-

mately 1.47 million transactions and a wide range of about 92,000
products. The dataset presents a detailed category hierarchy that
includes product department, product category, and product type.
It also offers comprehensive customer demographics, such as age,
income, household size, and marital status. Key transaction informa-
tion, like item quantity, transaction sales amount, and discounts, are
documented, enabling the calculation of unit prices and discounts 1.
We followed the same pre-process procedure shown in RetailSynth
[45] to remove seasonality effects, by cleaning out unregistered
customers, excluding transactions with non-positive transactions,
de-duplicating the product catalog, removing infrequent products,
and aggregating weekly transactions for each customer. This is a
typical procedure for optimizing marketing spend, customer life-
time value calculation, etc. To further increase the effective data
points for each customer, we clustered customers by their demo-
graphic information and ended up with a weekly retail transaction
with about 251,000 records from 6000 products and 400 customer
clusters.

Data Analysis. To generate more customer- and product-level
insights, we calculated derived features from the processed dataset,
such as product purchase probability, store visit probability, basket
size, etc. Figure 2 exhibits two numeric columns on the top row,
showing the skewed distributions of native feature, quantity, and
derived feature, basket size, in the real-world retail transaction
dataset. The distribution of quantities purchased tends to be posi-
tively skewed because most customers typically buy products in
small quantities. Bulk purchases are less frequent, leading to a long
tail on the right side of the distribution. The "Basket Size" subplot
shows the probability distribution of the total number of items in
a customer’s basket. The distribution is right-skewed, indicating
that while most transactions have a lower total basket size, a few
transactions involve significantly higher total purchases. This is
typical in retail, where a small number of premium customers can
drive a substantial portion of revenue.

Figure 2: Selected univariate distributions for dataset “Com-
plete Journey” illustrate diverse distributional patterns en-
countered in real-world datasets (see section 4.1).
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Similarly, the bottom row details categorical distributions for
"Customer Age", and "Household Size". Our dataset has a slight
concentration of customers in the middle age groups (e.g., 35-44 and
45-54), suggesting that middle-aged consumers form a large portion
of the customer base. However, younger (19-24, 25-34) age groups
are also well-represented. Household size describes the number
of members per household. The distribution peaks at household
sizes of 2 and 3, indicating that most customers come from small to
medium-sized households.

Figure 3: Marginal distribution of basket size by different
household sizes. Customers with more family members in
the household tend to buy more products in one visit (see
section 4.1).

We also looked into multivariate combinations to explore rela-
tionships among the pair of columns. For example, Figure 3 demon-
strates that as household size increases, the distribution of basket
sizes progressively shifts to the right. In single-member house-
holds, purchases predominantly consist of smaller basket sizes. As
household size grows from two to three and onward to five plus
members, the distribution begins to show a higher density of larger
basket sizes. This shift to the right indicates that larger households
tend to buy more in a single transaction, reflecting their greater
consumption needs.

Figure 4: Correlation of selected numeric and categorical dis-
tributions for dataset “Complete Journey” illustrating con-
textual relationships observed in the real-world dataset (see
Sec. 4.1).

Figure 4 shows a more comprehensive view on the Pearson cor-
relation coefficient for numerical-numerical feature relationships,
Theil’s U statistic for assessing dependence between categorical-
categorical features, and the correlation ratio for categorical-numerical

feature associations. For example, a high positive correlation be-
tween manufacturer id (C3) and department (C4), see appendix A
for a full list column mapping. Department, manufacturer, product
category, product type, and package size are strongly associated
with indicating a given product.

4.2 Synthetic Data Fidelity Assessment
Distributional similarity overview. For the holdout dataset

and synthetic datasets, we computed the average Wasserstein dis-
tance for numerical columns, the average Jensen-Shannon distance
for categorical columns, and Euclidean distances of the Pearson
correlation matrix, Theil’s U matrix, and correlation ratio matrix
against the training dataset. Table 2 presents a comprehensive eval-
uation of various generative AI models for retail synthetic data
generation, highlighting the diverse strengths and weaknesses of
each model.

Marginal Joint

Num Cat Num-Num Cat-Cat Num-Cat

Holdout 0.04 0.38 0.45 0.04 0.04

CTGAN 2.24 0.46 0.49 4.06 0.75
AutoGAN 1646.88 0.41 2.13 8.15 4.28
TabDDPM 5.36 0.38 0.85 3.79 1.22

StasyAutoDiff 7.55 0.38 1.18 3.89 1.59
TabAutoDiff 2.04 0.42 0.63 3.65 0.81

Table 2: Fidelity metrics of similarities on marginal distri-
butions and joint distributions, analyzed in 4.2. Different
models have different strengths, with the best-performed
model being highlighted for eachmetric. CTGAN and TabAu-
toDiff show more balanced performance from the fidelity
aspect (see section 4.2).

Among the models evaluated, TabAutoDiff and CTGAN emerge
as standout performers. TabAutoDiff demonstrates a consistently
balanced performance across all metrics, excelling in capturing
numerical marginal distributions and category-to-category joint
distributions. This balanced prowess suggests TabAutoDiff’s ability
to effectively replicate retail datasets’ complex, inherent patterns.
CTGAN, on the other hand, excels particularly in learning number-
to-number and number-to-category interactions. Both TabDDPM
and SatAutoDiff models showed their strengths in learning categor-
ical marginal distribution but failed to prove their intelligence in
other distributions. We would not recommend AutoGAN from the
fidelity perspective, because it did not stand out from any type of
distribution examinations. . GAN models can lead to poor represen-
tation of the relationships and correlations among columns when
the generator fails to capture the full diversity and complexity of
the original dataset because of Mode Collapse. This can happen
especially when the category columns present imbalanced distri-
butions. However, CTGAN employs techniques like mode-specific
normalization to stabilize the learning process.
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Marginal Distribution Visualization. We brought back fea-
tures from Figure 2 and presented learned distributions from var-
ious generative models in Figure 5, plotting not only the feature
distribution but also distributional differences between the real
training data and the synthetic data. When it came to numerical
features, quantity and basket size, TabAutoDiff and CTGAN were
the only models that replicated the skewed distribution, though
TabAutoDiff generated a small spike at the tail unexpectedly for
the quantity distribution and CTGAN learned much fatter tails for
both distributions. The diff plot proved These models’ robustness
again, where distributional difference histograms presented bars
with height near 0. All models, except StasyAutoDiff and AutoGAN,
were all capable to capture the right shape of category distributions,
especially when the number of unique values in one category is low.
However, if the dataset contains categorical columns with dramatic
variation, we should expect a more concerning model performance.

Correlation Matrix Visualization. To build a more informa-
tive presentation, we specifically provided a more detailed presen-
tation on CTGAN, which performed the best in replicating joint
distributions. Though the real dataset shows a weak correlation be-
tween features, CTGAN exhibits remarkable strength in capturing
both numerical interactions and mixed-type interactions in Figure
6, highlighting its capability to generate coherent and realistic re-
lationships within the data. This makes CTGAN a top choice for
applications where high fidelity in interaction data is critical.

Figure 6: Heatmap of correlation metrics for Num-Num and
Num-Cat interactions in the training, holdout, and CTGAN
synthetic dataset. CTGAN model can replicate the feature
interaction observed in the training dataset (see section 4.2)

Though we recommended TabAutoDiff and CTGAN from the
fidelity perspective, all generative models have metrics larger than
the corresponding values from the holdout dataset. This indicates
that there are still hidden patterns in the training dataset that these
models are not fully replicating. Synthetic data generation for retail
is inherently challenging due to the high degree of heterogeneity
and the dynamic nature of customer shopping preferences. Due to

the complexity and challenges in synthetic data generation, gen-
erative models still have further headroom to capture the latent
structure of retail datasets fully. The proposed evaluation frame-
work is pivotal in this regard, as it provides a standardized approach
to assess model stability and performance. By enabling a consistent
comparison across different models and metrics, this framework
aids in understanding the nuances of each model’s strengths and
areas for improvement.

4.3 Synthetic Data Utility Assessment
Classification Task. To evaluate the model utility, we formu-

late two tasks. One is a classification task to identify premium cus-
tomers who buy more products in one visit, predicting whether a
customer will purchase more than 10 products based on their demo-
graphics and average unit price. We trained all classifiers supported
by scikit-learn [29] and reported accuracy, F1, ROC, precision and
recall of the model produces the highest accuracy, Bagging Clas-
sifier [8], in Table 3. Among the synthetic data models evaluated,
TabAutoDiff emerges as the best-performing model for the clas-
sification task, indicating TabAutoDiff’s superior performance in
generating useful synthetic data that can effectively train classifica-
tion models. When comparing the utility metrics of the synthetic
data generated by TabAutoDiff to those of the train and holdout
datasets, it is evident that the model trained with synthetic data
achieved similar performance on all metrics, which indicates the
capability of synthetic data to generalize well to real data scenarios
and serve as an effective proxy for real data. In this way, retailers
can test marketing algorithms using synthetic data, eliminating the
costs and risks of live A/B testing on real customers.

Classification

Accuracy F1 ROC Precision Recall

Train 0.65 0.62 0.67 0.52 0.76
Holdout 0.66 0.62 0.68 0.52 0.77

CTGAN 0.68 0.40 0.60 0.63 0.29
AutoGAN 0.38 0.53 0.50 0.37 0.96
TabDDPM 0.63 0.11 0.51 0.52 0.06

StasyAutoDiff 0.62 0.16 0.51 0.45 0.10
TabAutoDiff 0.68 0.52 0.64 0.59 0.47

Table 3: Utility metrics on a classification task. TabAutoDiff
model achieves the best performance from the utility aspect
as it scores high on accuracy, F1, ROC, and precision. See
detailed description in Sec.4.3

Product Association Analysis. The other task is to analyze
product association in the training, holdout and synthetic datasets.
We performed market basket analysis at the product level to see if
there is a significant affinity for products to be purchased together
using the Apriori algorithm [31], a popular method used in datamin-
ing for extracting such association rules. Table 4 presents the Lift
metric, a measure of the likelihood that product B is bought when
product A is bought, and the Conviction metric, which compares
the probability that A appears without B if they were independent
vs the actual frequency of A’s appearance without B.
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Figure 5: Distribution of feature columns from the training dataset, holdout dataset, and synthetic datasets, as well as the
corresponding distribution difference to the one observed in the training dataset. The figure contains a primitive numerical
column (Quantity), a derived numerical column (Basket Size), and primitive categorical columns (Age, Household Size), see
4.2. Synthetic data generated by TabAutoDiff demonstrates feature distributions that closely mirror the ones of the original
training dataset.

𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 → 𝐵) = 𝑃 (𝐴 ∩ 𝐵)
/
𝑃 (𝐴) (1)

𝐿𝑖 𝑓 𝑡 (𝐴 → 𝐵) = 𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 → 𝐵)
/
𝑃 (𝐵) (2)

𝐶𝑜𝑛𝑣𝑖𝑐𝑡𝑖𝑜𝑛(𝐴 → 𝐵) = (1 − 𝑃 (𝐵))/(1 −𝐶𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 → 𝐵))
(3)

where 𝑃 (𝐴 ∩ 𝐵) is probability both products being purchased,
and𝑃 (𝐴), 𝑃 (𝐵) is the individual probability of purchasing product
A or B accordingly.

If Lift and Conviction much larger than 1, it means that prod-
uct B is likely to be bought if product A is bought. In Table 4,
both values for the synthetic datasets generated by AutoGAN and
TabAutoDiff are significantly different from those of the Train and
Holdout datasets. AutoGAN shows an exceptionally high lift and

conviction values, indicating an overestimation of product pair oc-
currences, whereas TabAutoDiff’s lift, although lower, still does not
align closely with the real datasets. The synthetic data generated
by CTGAN, TabDDPM, and StasyAutoDiff did not observe any fre-
quently purchased product pairs, indicating a fundamental gap in
learning the essential co-occurrence relationships of products. This
metric is invaluable for retailers as it helps identify product bundles,
optimize placement strategies, and enhance cross-selling opportu-
nities, thus leveraging consumer purchasing patterns to drive sales
and customer satisfaction. By incorporating lift values, retailers can
make data-driven decisions to refine their marketing and inventory
strategies effectively. The evident difficulties reveal that existing
generative models struggle in this aspect, which highlights the
need for further refinement in replicating complex pairwise and
higher-order relationships between products.
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Train Holdout AutoGAN TabAutoDiff

Confidence 0.18 0.18 0.99 0.26
Lift 1.73 1.72 20.89 4.83

Conviction 1.10 1.09 inf 1.30

Table 4: Product association analysis for the listed synthetic
data. Neither of the reported models can identify a similar
product association rule observed in the training dataset. See
analysis for each metric in Sec.4.3

4.4 Synthetic Data Privacy Assessment
Among the models we evaluated, TabAutoDiff showed a balanced
performance in data privacy protection and model generalization.
Table 5 presents privacy metrics for synthetic datasets generated by
various models, focusing on the Distance to Closest Record (DCR)
and the Closest Record Ratio (CCR). These metrics are crucial for
assessing the privacy preservation capabilities of synthetic data, as
they indicate how closely synthetic records resemble real training
data points and the distribution balance, respectively.

Analyzing the DCR metric, the holdout set has the lowest DCR
value, representing the benchmark distance within the real dataset.
A larger DCR is preferred as it signifies that synthetic data points
are not too close to any specific real training data points, thereby en-
hancing privacy. Among the models evaluated, TabAutoDiff demon-
strates one of the higher DCR values. This indicates that its syn-
thetic data maintains a significant privacy distance from the real
data compared to other models, and stays at a lower risk of privacy
leaking compared to the holdout dataset. TabAutoDiff also achieves
the lowest CCR value, suggesting that the model did not overfit
with the training data, thus providing good generalizability.

DCR CCR

Holdout 1.0 -

CTGAN 4.24 0.48
AutoGAN 8.82 0.51
TabDDPM 4.52 0.72

StasyAutoDiff 4.02 0.54
TabAutoDiff 10.86 0.45

Table 5: Privacy metrics of all tested models. TabAutoDiff
stands out from the privacy aspect as it obtains the best per-
formance in DCR andCCR. See detailed description in Sec.4.4

The retail industry is particularly cautious with customer data
due to the sensitivity and privacy issues associated with handling
such information. Strict regulations and the potential for reputa-
tional damage necessitate robust privacy preservation measures.
The mixed performance of different models in terms of DCR and
CCR highlights the need for a nuanced choice in synthetic data gen-
eration. While DCR is critical for ensuring individual data points
are not too closely replicated, CCR helps ensure data generalizabil-
ity, crucial for practical use in retail analytics. Thus, TabAutodiff is
the best among evaluated models from the privacy perspective.

5 CONCLUSION
Our comprehensive evaluation framework revealed distinct per-
formances across various generative AI models for synthetic retail
data. For fidelity, TabAutoDiff and CTGAN stood out, with TabAu-
toDiff demonstrating balanced performance across all metrics and
CTGAN excelling in capturing joint distribution metrics. In utility
assessment, TabAutoDiff emerged as the top performer, effectively
replicating the utility of real data in the classification task. However,
none of the tested models demonstrate even a minimally acceptable
performance in the product association analysis, indicating that
further refinement of the model structure is necessary to achieve
satisfactory results. For privacy, Distance to Closest Record (DCR)
and Closest Cluster Ratio (CCR) metrics highlighted the models’
ability to anonymize data effectively and balance generalization and
identified TabAutoDiff again as the best one among the tested mod-
els. The proposed evaluation framework successfully highlighted
the strengths and areas for improvement of each model, promot-
ing the development of more effective and reliable synthetic data
generation techniques for the retail sector. Overall, our standard-
ized framework helps assess synthetic data generation models and
facilitates transparent benchmarking.

6 DISCUSSION
To improve the evaluation framework, future research could fo-
cus on developing domain-specific metrics that capture the unique
characteristics and complexities of various retail datasets, such as
transactional data, inventory data, etc. Expanding the diversity and
size of the datasets used for evaluation would enhance the robust-
ness and generalizability of the evaluation framework’s findings.

Anticipated advancements in synthetic data generation and eval-
uation include the development of more sophisticated generative
models or LLM models capable of capturing higher-order depen-
dencies and dynamic patterns presented in retail data. As these
models evolve, they will not only improve in faithfully replicating
the complexities of consumer behaviors but also in their ability to
fill gaps where real-world data might be sparse or biased. Once
the model reaches a mature level of learning all the patterns that
retailers care about, we can confidently say that the generative
model mirrors real customer purchase behavior. This validation
would open up a multitude of applications, allowing the model to be
used for inference such as demand forecasting and dynamic pricing.
Furthermore, the robust nature of such advanced models could be
leveraged within simulation environments to develop simulated
A/B testing and test variations of a product or service in a con-
trolled and cost-effective manner. A simulation environment with
reliable generative models can also bridge the gap of reinforcement
learning (RL) agents deployment aimed at personalized coupon-
targeting strategies and optimizing customer engagement [21, 46].
By aligning synthetic data generation advancements with these
application areas, businesses can not only gain deeper insights but
also implement more dynamic and responsive retail strategies
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A COLUMN NAME MAPPING
The complete journey data has relative long names for each column.
For a succinct presentation of the correlation heatmap in figure
4, we created a column mapping to label numerical columns and
categorical columns.

Raw name Type Label

product_id categorical C1
household_id categorical C2
week categorical C3
manufacturer_id categorical C4
department categorical C5
brand categorical C6
product_category categorical C7
product_type categorical C8
package_size categorical C9
age categorical C10
homeownership categorical C11
marital_status categorical C12
household_size categorical C13
household_comp categorical C14
kids_count categorical C15

quantity numerical N1
sales_value numerical N2
retail_disc numerical N3
coupon_disc numerical N4
coupon_match_disc numerical N5
unit_price numerical N6

Table 6: Column name mapping to the shortened label.
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