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ABSTRACT
The promise of tabular generative models is to produce realistic
synthetic data that can be shared and safely used without dangerous
leakage of information from the training set. In evaluating these
models, a variety of methods have been proposed to measure the
tendency to copy data from the training dataset when generating
a sample. However, these methods suffer from either not consid-
ering data-copying from a privacy threat perspective, not being
motivated by recent results in the data-copying literature or being
difficult to make compatible with the high dimensional, mixed type
nature of tabular data. This paper proposes a new similarity metric
and Membership Inference Attack called Data Plagiarism Index
(DPI) for tabular data. We show that DPI evaluates a new intuitive
definition of data-copying and characterizes the corresponding pri-
vacy risk. We show that the data-copying identified by DPI poses
both privacy and fairness threats to common, high performing
architectures; underscoring the necessity for more sophisticated
generative modeling techniques to mitigate this issue.
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1 INTRODUCTION
Data-copying is a particularly concerning manifestation of gen-
erative models overfitting [6, 28]. Historically, researchers have
observed that deep learning models exhibit overfitting behaviors,
sometimes generating unrealistic instances and at other times cre-
ating instances overly similar to samples in the training dataset.
While the former can be lauded as "creative and imaginative," the
latter poses a significant risk, threatening the confidentiality of
training data. Indeed, previous studies [3] reveal that many promi-
nent generative models attain high scores in terms of fidelity and
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diversity by memorizing or copying real samples, which compro-
mises their effectiveness for privacy-sensitive applications. The
issue of data-copying is paramount in the field of tabular genera-
tive models, especially as these models are often used in scenarios
involving sensitive data and strict privacy protocols [47]. This paper
focuses on the challenge of detecting and evaluating data-copying
in tabular data generation, highlighting its critical role in enhancing
the trust and accountability of these methods.

Various paradigms have been proposed to study data-copying in
generativemodels, including hypothesis testing [28], non-parametric
statistics [6], Membership Inference Attacks [41], and ad-hoc sim-
ilarity metrics [3, 34, 38]. Each of these approaches contributes
unique insights into the phenomenon of data-copying in tabular
generative models but have some sort of drawback. For instance,
while similarity metrics used in tabular synthetic data literature
offer an understanding of the geometric relationship between train-
ing and generated data, they lack a threat model to assess the pri-
vacy risks associated with these geometries (see [15]). Conversely,
Membership Inference Attacks provide valuable tools for under-
standing privacy risks but are often disconnected from the model
overfitting literature and are challenging to apply to the complex,
high-dimensional and mixed-type distributions that are common in
tabular data applications. The disjoint nature of the data-copying
literature fails to address common practitioner questions, such as:

’To what extent does a model copy training data, and how practically
significant is this problem?’

Unfortunately, we show that the problem is substantial, as evi-
denced by Figure 1.

In this paper, we study data-copying in tabular generative model
from the perspective of all three of these disconnected areas (Mem-
bership Inference Attacks, ad-hoc similarity metrics and Data-
Copying measures). The goal is to craft a principled, interpretable,
and privacy orientated metric that can be applied to tabular gen-
erative modelling. Here, we propose Data Plagiarism Index (DPI);
a theory-motivated measure of local data-copying (Section 4.1).
We argue that DPI differs from other competing metrics and show
how it provides a novel geometric perspective on the data-copying
behavior of generative models. With the proposed privacy metric
DPI, we further develop a new type of Membership Inference At-
tack, named DPI MIA (Section 4.2), that bridges this data-copying
measure with testable privacy risk. Our experiment (Section 5) find
that DPI MIA identifies a tendency among high-fidelity tabular data
generators to perform risky data-copying, raising privacy concerns.

Furthermore, our empirical evidence (Figure 1) reveals that tabu-
lar generative models disproportionately favor certain privi-
leged sub-populations within the synthetic sample of the classic
Adult dataset, raising serious fairness concerns when practitioners
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Figure 1: A t-SNE plot of Tab-DDPM’s training data with cor-
responding top 1% DPI Scores in red on the Adult dataset. DPI
identifies an outlier region in the bottom right correspond-
ing to an extreme privileged class (married, white, middle
aged, high capital gains, private industry, respondents mak-
ing >50k in income). This provides evidence that Tab-DDPM
copies the training data of outlier and privileged classes, cre-
ating serious fairness concerns for practitioners who use
synthetic data in their downstream machine learning tasks.
See Sec. 5.3 for detailed discussions.

use synthetic data in downstream machine learning tasks. This
troubling finding underscores that the proposed Data Plagiarism In-
dex (DPI) is not merely a technical curiosity but a critical issue that
can compromise both the privacy and fairness of tabular generative
models.

Overall, we summarize our contribution to the Trustworthy
Generative Modeling literature as follows:

(1) We propose a novel privacy measure called Data Plagiarism
Index (DPI) and a correspondingMembership Inference Attack
called DPI MIA that measures the privacy risk of synthetic
tabular data from data-copying.

(2) We provide empirical evidence (Figure 4) that DPI identifies a
positive correlation between tabular generative models’ utility
and privacy risks.

(3) We provide empirical evidence (Figure 1) that reveals that Tab-
DDPM [23] drastically copies the source training data of privi-
leged sub-classes, creating a source of structural unfairness in
the synthetic data.

(4) We show (Figure 4, Table 1) that DPI MIA can identify a differ-
ent kind of data-copying undetectable by existing Membership
Inference Attacks with comparable threat performance, provid-
ing a new way to deploy privacy attacks to audit synthetic data
privacy.

2 RELATEDWORK
In this section, we review three major literature to measure the
overfitting and data-copying phenomenon of tabular generative
models.

2.1 Measure Data-Copying in Generative
Models

Generative models’ data-copying in the literature is identified when
synthetic data is excessively similar to training samples [28]. This
is typically evaluated using a reference dataset, sampled from the
same distribution as the training dataset. The common method
involves an "appropriate distance function" to check whether syn-
thetic data is closer to the training data or the reference data [34].
[28] for example focuses on identifying a suitable distance function
to determine whether a synthetic dataset or a reference dataset
is closer to the training dataset, thus testing if generative mod-
els exhibit data-copying. They devised a non-parametric method
that divides the instance space into cells, tests each cell individu-
ally, and combines the results to understand the overall degree of
data-copying. This concept inspired our more sophisticated data-
copying measure (See Section 3.1). [6] introduces a more advanced
data-copying test, capable of detecting data-copying behaviors not
identified by [28]. Both of these studies however have limitations
in high-dimensional complex distributions and also do not evaluate
data-copying from a privacy perspective. DPI is more practical and
accurately captures the degree of local data-copying, aiding in the
assessment of synthetic data privacy risks (See Fig 1).

2.2 Similarity Metrics between Real and
Synthetic Data

A variety of ad-hoc metrics have been proposed to evaluate the
privacy of tabular synthetic data from a model overfitting perspec-
tive. Broadly speaking, these metrics focus on determining the level
of similarity between the training and synthetic datasets ideally
hoping to find that the generated data is in a ’Goldilocks’ zone: not
too similar to the training data, but also not too dissimilar. These
metrics will often be posed as a comparison between the training
and a reference set and training and synthetic sets creating a sort
of ’Null Distribution’ in which to test privacy.

A common example of an often used similarity metric is Distance
to Closest Record (DCR) [16, 25, 27, 31, 46, 51] where for each
training point the distance to its closest neighbor in the synthetic
dataset is compared with the distance of the closest neighbor in
the reference dataset. Another is Identical Matching Score [1, 2, 27]
which compares the proportion of identical records in the training
and synthetic observations.

There are a variety of problems with this style of privacy eval-
uation. The first is that these similarity metrics do not actually
guarantee nor are they evaluated by any idea of privacy protections
against some sort of attack. For example, passing or failing a DCR
or IMS test does not provide any information for how well a privacy
attack may or may not do. Secondly, posing privacy as a hypoth-
esis testing problem is a cardinal Statistics sin in that if the null
hypothesis is: "the synthetic data are private" and the alternative is:
"the synthetic data are not private", passing the test does not imply
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confirmation of the null, only that there is a failure to find suffi-
cient evidence in which to reject the null [7]. However, while not
being theoretically motivated, these metrics do provide an intuitive
tool to study the geometric relationships between the training and
synthetic datasets. Technically, DPI can be classified as a similarity
metric and used in this way but these problems motivate DPI to
adopt a Membership Inference Attack paradigm to overcome these
dubious privacy interpretations.

2.3 Membership Inference Attacks for
Generative Models

Membership Inference Attacks have traditionally been studied in
a supervised learning context and only relatively recently have
become applied to generative models. Here, the goal of the attack is
to determine whether some sample of test data 𝑥∗ ∈ 𝑋 ∗ was used
in the training of the model based on some information about that
model [37]. The scenario of what information is available for an
attacker is called the threat model to which there are a variety of
identified contexts for generative model MIAs. These include black
box attacks [8, 17, 18] in which only generated synthetic data is
available, white box attacks in which both synthetic data and the
internals of a model are known, and calibrated (also called shadow)
attacks in which both a synthetic dataset and then a reference
dataset from the same or similar distribution as the training set
are given [8, 17, 41]. Most attacks generally fall into the black box
and calibrated paradigms as white box attacks are usually specific
to the model architecture in question [36]. The value of MIAs is
that they provide a tangible, practical scenario in which to study
privacy risks. We will later frame DPI as an MIA in order to study
how identifying local data-copying corresponds to privacy leakage.

3 PRELIMINARIES
3.1 Formal definition of Data-Copying
We first introduce a formal definition of data-copying motivated
by [28] to provide theoretical context for Data Plagiarism Index.
Given a data distribution P and a region 𝐶 , consider the following
probability measure: P|𝐶 (𝐴) ≡ P(𝐴 ∩𝐶)/P(𝐶) for all measurable
set 𝐴. Let 𝑅 denote the distribution of reference data points and 𝑆
denote the distribution of synthetic data points.

Given a neighborhood 𝐷 (𝑥) of target data point 𝑥 , define a one-
dimensional distribution by 𝐿(𝑅) ≡ 𝐼 (𝑅 ∈ 𝐷 (𝑥)) and 𝐿(𝑆) ≡ 𝐼 (𝑆 ∈
𝐷 (𝑥)) to denote separately the event of the reference data distribu-
tion and synthetic data distribution belonging to the neighborhood
𝐷 (𝑥). By definition, 𝐿(𝑅) ∼ 𝑅 |𝐷 (𝑥 ) and 𝐿(𝑆) ∼ 𝑆 |𝐷 (𝑥 )

Define Δ(𝑅, 𝑆) = 𝑃 (𝐵 > 𝐴|𝐵 ∼ 𝐿(𝑆), 𝐴 ∼ 𝐿(𝑃) to be the event
that the synthetic data points have a greater probability in belonging
to neighborhood 𝐷 (𝑥) than the reference data points.

In the spirit of Definition 2.1 of [28], we define a generative
model as data-copying a training data point 𝑥 , if there exists a
neighborhood 𝐷 (𝑥) of 𝑥 such that the synthetic data distribution
𝑆 is systematically closer to the training data point 𝑥 than the
reference data distribution 𝑅, in the sense that

Δ(𝑅 |𝐷 (𝑥 ) , 𝑆 |𝐷 (𝑥 ) ) <
1
2

See Figure 2(a) as an example.

3.2 Distance to Closest Records (DCR)
The Distance to Closest Records (DCR) technique was developed
to identify identical matches between synthetic and training data
[27, 31]. However, it is essential to note that detecting identical
matches and identifying data-copying are distinct tasks. While
distance measures are appropriate for finding identical matches,
they are not as effective for detecting data-copying, which is more
appropriately viewed as a proportional measure. As discussed in
Section 3.2 of [34], a DCR of zero signifies an identical match, but a
non-zero DCR does not capture the extent of personal information
disclosure. This inherent flaw renders DCR an unsuitable measure
of synthetic data privacy, as it does not accurately assess privacy
risk. Our proposed Data Plagiarism Index (DPI) provides a more
effective metric for synthetic data privacy by quantifying privacy
risk.We utilize DPI to construct aMembershipAttack, whose results
reveal the privacy risks of synthetic data. See Section 4.2.

3.3 Membership Inference Attacks as Privacy
Auditors

Membership Inference Attacks (MIA) for synthetic data aim to de-
termine if a given sample was a member of the original training set
used to train a generative model. Consider a random variable 𝑋 de-
fined on the domain X, following a probability distribution 𝑝𝑋 (𝑋 ).
Let 𝐷𝑡𝑟𝑎𝑖𝑛 represent a training dataset consisting of independently
sampled observations from 𝑝𝑋 (𝑋 ). A generative model 𝐺 is then
trained on 𝐷𝑡𝑟𝑎𝑖𝑛 and used to produce a synthetic dataset 𝐷𝑠𝑦𝑛 . An
attacker model, A : 𝑋 → 0, 1, has access to the synthetic dataset
𝐷𝑠𝑦𝑛 , a test data point 𝑥∗ drawn from the same distribution as 𝑋 ,
and depending on the threat model, potentially other information.
The attacker’s objective is to determine whether the test point 𝑥∗
belongs to the original training set 𝐷𝑡𝑟𝑎𝑖𝑛 . An ideal attacker would
output A(𝑥∗) = 1 if 𝑥∗ ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 , and 0 otherwise. By considering
privacy in this framework, MIAs allow for the practical evalua-
tion of the risk of synthetic data release, relative to an adversarial
scenario [37].

In this paper, we study a special case of Membership Inference
Attacks in which the attacker has access to an additional reference
dataset 𝐷𝑟𝑒 𝑓 sampled from same distribution as 𝐷𝑡𝑟𝑎𝑖𝑛 but not
used in the training of 𝐺 . There are a variety of both practical and
theoretical reasons for the inclusion of 𝐷𝑟𝑒 𝑓 in the attack. First,
𝐷𝑟𝑒 𝑓 represents a worse-case scenario in which the attacker has
access to the most information possible in which to build an attack
which makes this situation important to study from a conservative,
privacy conscious data publisher’s perspective. Second, it is a real
scenario that particularly tabular-orientated data publishers face
in that 𝐷𝑟𝑒 𝑓 can be a leaked dataset, historic data, data from a
competitor, or even a dataset built from publicly available data.
Lastly, the inclusion of 𝐷𝑟𝑒 𝑓 is theoretically motivated from the
growing body of literature involved with testing for data-copying in
a generative model in that in order most frameworks contextualize
model miss-specification between𝐷𝑡𝑟𝑎𝑖𝑛 and𝐷𝑠𝑦𝑛 as being relative
to a holdout dataset [6, 28, 34].
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Figure 2: Data Plagiarism Index (DPI): We propose a novel privacy metric named Data Plagiarism Index (DPI). For each target
data point (black point), we calculate the Data Plagiarism Index 𝜌 by first constructing a k-nearest neighborhood (blue circle)
around the target data point on the space with reference data points (green points) and synthetic data points (red points). The
Data Plagiarism Index 𝜌 is defined simply as the ratio of number of synthetic data points to the number of reference data
points. See Sec. 4.1 for whole details.

4 MEASURING DATA-COPYING
MISBEHAVIOR

4.1 Data Plagiarism Index (DPI)
We propose a novel privacy metric called Data Plagiarism Index
(DPI), as illustrated in Figure 2. For each training data point 𝑥 , we
calculate the Data Plagiarism Index 𝜌 by first constructing a K-
Nearest Neighborhood 𝐷 (𝑥) around 𝑥 on the space with reference
data points and synthetic data points. The Data Plagiarism Index 𝜌
is defined simply as the ratio of number of synthetic data points to
the number of reference data points; that is

𝜌 (𝑥) ≡
∑
𝑥𝑖 ∈𝐷 (𝑥 ) 𝐼 (𝑥𝑖 ∈ 𝑆)∑
𝑥𝑖 ∈𝐷 (𝑥 ) 𝐼 (𝑥𝑖 ∈ 𝑅)

(1)

The DPI ranges from 0 to infinity, capturing a spectrum of data
generation scenarios:
• DPI = 0: Indicates no synthetic data points in the neighborhood,
suggesting potential under-fitting by the generative model.

• DPI = 1: Represents an equal number of synthetic and refer-
ence data points, implying no data plagiarism or under-fitting,
signifying a balanced data generation process.

• DPI > 1: Highlights a greater presence of synthetic data points
compared to reference data points, with increasing values point-
ing towards significant data plagiarism.

This comprehensive range allows the DPI to effectively capture
various data generation scenarios, providing critical insights into
the quality and privacy of synthetic datasets.

We provide 3 toy examples to help better understand how to inter-
pret DPI values. In each example, consider the𝐾 = 10 nearest neigh-
borhood for the target data point𝑥 , denoted by𝐷 (𝑥) = {𝑥1, · · · , 𝑥𝑛}.
Each element 𝑥𝑖 in the neighborhood may come from the synthetic
dataset 𝑆 or reference dataset 𝑅:

ToyExample 1 (Data Plagiarism, Figure 2.(a)). Say 8 elements
come from the synthetic dataset and 2 elements come from the
reference dataset. Then the Data Plagiarism Index 𝜌 (𝑥) = 8/2 = 4,
which means the number of synthetic data points is 4 times that of
the reference data points! This marks serious data-copying behavior
from that generative model.

Toy Example 2 (Generator Under-fitting, Figure 2.(b)). In
this situation, say 2 elements come from the synthetic dataset and
8 elements from the reference dataset. Then the Data Plagiarism
Index 𝜌 (𝑥) = 2/8 = 1/4, which means the number of synthetic data
points is 25% of that of the reference data points! This marks little
data-copying behavior, but also suggests a potential underfitting
issue around the target data point 𝑥 .

Toy Example 3 (Data-Copying Free, Figure 2.(c)). Lastly,
say there are 5 items from the synthetic dataset and 5 from the
reference dataset. The Data Plagiarism Index is then 𝜌 (𝑥) = 5/5 = 1,
meaining the number of synthetic data points is equal to the number
of reference data points! This marks no data plagiarism and no
underfitting behavior around the target data point 𝑥 .

In summary, the Data Plagiarism Index offers a robust and in-
tuitive metric for evaluating the balance between synthetic and
reference data points within a specified neighborhood around a
target data point. By calculating the ratio of synthetic to reference
data points, the DPI effectively highlights critical instances of data
plagiarism, under-fitting, or a balanced data generation process.
This metric is invaluable for rigorously assessing the performance
of generative models, ensuring data integrity, and proactively iden-
tifying potential issues in synthetic data generation.
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Figure 3: Data Plagiarism Index Membership Inference Attack (DPI MIA) See Sec. 4.2 for full details.

4.2 Data Plagiarism Membership Inference
Attack

While the Data Plagiarism Index defined at Equation (1) provides
insight into the local behavior of generative models, on its own
it does not characterize the actual privacy risk of data-copying in
tabular generative models. We therefore show that a Membership
Inference Attack can be derived from DPI which is designed to mea-
sure and then attack the local data-copying of generative models
to evaluate the privacy risk.

Note that, in the literature of similarity metrics (Sec. 2.2), only
the training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 is compared to the synthetic 𝐷𝑠𝑦𝑛 and
reference 𝐷𝑟𝑒 𝑓 sets. In the MIA paradigm however (Sec. 2.3), a
fourth holdout dataset 𝐷ℎ𝑜𝑙𝑑𝑜𝑢𝑡 is taken and combined with the
training dataset post generator training: 𝑋 = 𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷ℎ𝑜𝑙𝑑𝑜𝑢𝑡 .
The goal of an attacker A(𝑥) is to effectively discriminate which
set each record 𝑥 ∈ 𝑋 originated from.

The Membership Inference Attack based on the Data Plagiarism
Index can divided into three steps (See Figure 3):

Step 1: Prepare 4 Datasets. In the initial step, four distinct
datasets are prepared to facilitate an attack construction. The foun-
dation begins with the original dataset (denoted in black), which
is divided into 3 equal sized sub-sets: the Training Dataset (blue),
the Holdout Dataset (Yellow) and the Reference Dataset (green). The
Training Dataset is used to train the generative model, which sub-
sequently generates the Synthetic Dataset (red). In parallel, the
Holdout Dataset serves as an independent test set, deliberately
excluded from the training phase.

Step 2: Compute DPI Values. The second step involves the
computation of the Data Plagiarism Index (DPI) values defined
at (1) for each data point within both the Holdout and Training
datasets. This identifies data-copying in the local neighborhoods
of test points from both datasets. The intuition here is that scores
for test points from the Training set should theoretically be higher
than the Holdout set if a model is vulnerable to copying data.

Step 3: PerformMIA for Each Test Point In Step 3, aMember-
ship Inference Attack (MIA) is executed to evaluate the privacy risk
associated with a specific target data point. This uses the DPI score
of the target data point, which is compared against a predefined
threshold 𝑐 . The attack can be written as:

A(·) = 𝐼 (𝜌 (·) > 𝑐), (2)

where A denotes the attack function, 𝜌 (·) signifies the DPI value,
and 𝐼 is an indicator function assessing if the DPI surpasses the
threshold 𝑐 . Should the DPI value of the target data point exceed
𝑐 , it indicates that the data point is likely to have been part of
the training data, thereby exposing a potential privacy breach. In
practice, MIAs are often benchmarked using AUCROC and so the
choice of 𝑐 is largely irrelevant. Our implementation chooses 𝑐 as
the median of 𝜌 (𝑥) for 𝑥 for all test data.

The proposed DPI MIA defined at Equation (2), though straight-
forward, is a fast and easily interpretable attack, well-suited for
auditing privacy in high-dimensional, mixed-type datasets. Indeed,
as it only uses a K-Nearest Neighbor Search, it can be ran with
linear or logarithmic time complexity (see [14], [21]). Moreover,
DPI MIA is compatible with various definitions of distance, making
it versatile to many specific applications.

5 RESULTS
5.1 Experiment Setup
We are interested in studying how DPI compares with other Mem-
bership Inference Attacks, to what extent different tabular data
generator architectures copy data, and if there are trends in the
kind of data copied. To investigate these research questions, we
benchmark a variety of model architectures and MIAs on the Adult
Census dataset [5]. We provide descriptions of each model and MIA
in appendix A.2 and A.3 respectively. In each experiment, Adult is
randomly split into 3 equal sized training, holdout and reference
sets where the generated synthetic size is also equal to these set.
We replicate each experiment 5 times and visualize or report the
means and standard deviations of the measures of interest where
applicable.

For DPI, 𝐾 has to be chosen as a hyperparameter and for data vi-
sualization purposes we plot the best performing DPI attack (Using
L2 distance and𝐾=20). We refer to appendix ?? for an ablation study
of Section 5.4 containing plots with various distance metrics and 𝐾
levels but in practice, DPI is fairly stable in its results regardless of
𝐾 and we observed no extreme changes in behavior based on these
hyperparameters.
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Figure 4: Classifier AUCROC, MaximumMean Discrepancy, and Wasserstein Distance plotted with corresponding DPI MIA
AUCROC for various common architectures. Interestingly, Bayesian Network, Adversarial Random Forest, and Tab-DDPM
outperform other models in these performance metrics but have higher privacy risk. See Sec. 5.2 for full details.

5.2 Data-Copying in Tabular Data Generators
We first wish to confirm that there is a privacy risk to data copying
in common tabular generators. Here, we benchmark a wide range
of tabular generator strategies including: CTGAN and TVAE [45],
Normalizing Flows (NFlow) [12], Bayesian Network (BN) [4], Adver-
sarial Random Forests (ARF) [44], Tab-DDPM [23], PATEGAN [49],
and Ads-GAN [48]. We evaluate these models on several metrics of
synthetic data quality: the Maximum Mean Discrepancy between
the training and generated data (lower is better), the Wasserstein
distance between the marginals of the training and generated data
(lower is better), and finally the AUCROC of an XGBoost [9] classi-
fier trained on the synthetic set and tasked to predict on a holdout
set (higher is better). We deploy the DPI MIA attack as described in
Section 4.2 and report its AUCROC.

We visualize the mean values of utility metrics plotted against
the AUCROC of DPI MIA in Figure 4. Very interestingly, we observe
that there is a clear trend between model performance and privacy
risk. This suggests that data-copying could be a reason for why
these models perform better, but additional research would need to
be conducted to see if this is a causal or correlative relationship.

5.3 Properties of Training Data with High DPI
Scores

We also investigated the training data egregiously copied according
to DPI. Here, we identified the top 1% highest scored training data
based on synthetic data generated by Tab-DDPM [23] as it is widely
used as a benchmark in the current tabular generation literature
[22, 39, 50]. We visualize these data in Figure 1 as a t-SNE plot [42]
with the top 1% highly scored indexes by DPI in red. Worryingly,
DPI identifies an outlier region of the distribution as being subject
to this extreme top percentile data-copying (the bottom right of the
plot). When analyzing these observation themselves, we found that
an extreme majority were all examples of married, white, middle
aged, high capital gains, private industry, respondents making >50k
in income. In the algorithmic fairness literature that often uses

Figure 5: MIA AUCROC Benchmarks by Training Set Size on
Tab-DDPM. This shows that DPI MIA is more effective than
other existing MIAs described at Sec. 2.3. See Sec. 5.4 for full
details.

Adult in benchmarking, this is considered to be a minority but very
privileged class [30]. This suggests that not only is there a technical
and privacy concern with data-copying, but it could also exacerbate
unfairness.

5.4 Benchmarking the Privacy Risk of DPI
Lastly, we evaluate DPI in relation to other MIAs in order to un-
derstand its efficacy as an MIA strategy. We evaluate the black box
attacks of MC [18], and GAN Leaks [8] as well as the calibrated
attacks of LOGAN [17], GAN Leaks Calibrated [8] and DPI. We also
benchmarked DOMIAS [41], but we found that its density estima-
tion failed to converge and its results were always the equivalent of
random guess and therefore we do not formally report it. Again, we
evaluate these methods on Tab-DDPM [23]. In Figure 5, we display
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Figure 6: Distance Based Metrics/ MIAs of Overfitting vs DPI. DCR and GAN Leaks Calibrated evaluate overfitting based on a
difference in relative distances whereas DPI evaluates data-copying based on the larger local neighborhood. This means that
DPI evaluates data-copying differently than competing methods, explaining why predictions scores are not highly correlated
(See Table 1). See Sec. 6.2 for full details.

Table 1: AUCROC for DPI and GAN Leaks Calibrated with
Corresponding Pearson Correlations for the Predicted Scores.
This tables shows that the proposed DPI identifies different
types of data-copying than the one identified by the existing
MIA attack. See Sec. 5.4 for whole details.

Model Metric

DPI MIA GAN Leaks CAL 𝑟

Tab-DPDM 0.510±0.004 0.507±0.003 0.404±0.012
BN 0.532±0.005 0.623±0.000 0.268±0.020
ARF 0.520±0.000 0.524±0.001 0.339±0.006
AdsGAN 0.503±0.003 0.501±0.003 0.467±0.039
CTGAN 0.504±0.003 0.501±0.005 0.444±0.063
NFlow 0.501±0.006 0.500±0.000 0.482±0.023
PATEGAN 0.503±0.003 0.502±0.003 0.516±0.018
TVAE 0.505±0.005 0.502±0.003 0.466±0.023

the results for each of these methods across various 𝐷𝑡𝑟𝑎𝑖𝑛/ 𝐷𝑟𝑒 𝑓 /
𝐷𝑠𝑦𝑛 sizes. For simplicity, each dataset is equal in size to its other.

Overall, DPI is competitive with other Membership Inference
Attacks compatible with these data, dominating at most testing
sizes. Interestingly, GAN Leaks Calibrated performs similarly or
better than DPI. However, GAN Leaks Calibrated scores test data
very differently than DPI, being based on a difference in the relative
distances of the closest synthetic and reference points. In Table 1 we
show that for various models, while the performance of GAN Leaks
Calibrated and DPI can differ, the Pearson Correlation between their
scores is relatively low. This implies that while these measures are
correlated, DPI is picking up on its specific data-copying definition.
Indeed, the motivation of this work is not to create a State of the
Art Membership Inference Attack for all architectures, but rather
to characterize the unique risk DPI implies.

6 DISCUSSIONS
6.1 Implications for Privacy and Fairness in

Synthetic Data
Data Plagiarism Index provides evidence that popular tabular gener-
ative models can exhibit risky data-copying behavior. This includes
leaking information and favoring specific sub-class outliers in the
distribution of the training data. Thus, DPI can be used as a tool
to audit and study model behavior. It should be noted however,
that while DPI can show synthetic data are not private, it cannot
prove the opposite: that particular synthetic data are private. For
example, different MIAs may have various levels of success if their
method targets different attributes of the synthetic data. This is
proved by Table 1 where DPI and GAN Leaks Calibrated predicted
scores, while correlated, were not perfectly aligned.

On top of model auditing, DPI can be connected to Differential
Privacy applications [13]. Here, DPI can be used to evaluate the
practical lower bound of the privacy parameter 𝜖 . For example,
one approach is to select a pair of neighboring training datasets
𝐷1 and 𝐷2 and produce corresponding synthetic datasets 𝐷̃1 and
𝐷̃2 with a generative model. With DPI, we can then create corre-
sponding data copying score distributions to find a decision rule
that, given an unknown synthetic dataset 𝐷̃ , identifies whether its
source was 𝐷1 or 𝐷2. If the decision rule’s true positive rate is 𝛼
and the false negative rate is 𝛽 , based on the remark after Theorem
1 in [19], the privacy budget’s lower bound can be expressed as
𝜖 ≥ logmax

{
𝛼

1−𝛽 ,
𝛽

1−𝛼

}
. This approach quantifies the minimum

differential privacy level that the generative model upholds.

6.2 Methodological Differences in DPI
DPI provides a new geometric definition for data-copying in the
context of an available reference set and uniquely attacks this at-
tribute relative to other MIAs. In Figure 6, we show a variety of
scenarios in which hypothetical test data points are plotted with
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their closest synthetic and reference set neighbors. We show that
under the Distance to Closest Record (DCR) metric and GAN Leaks
Calibrated MIA [8] (which in many respects is the MIA version
of DCR) understanding of data-copying, certain scenarios would
be classified differently where they would label a positive instance
of overfitting based on extreme differences in the distances of the
nearest synthetic and reference points whereas DPI labels it based
off of extreme differences in proportions. Thus, DPI evaluates data-
copying in a fundamentally different way than DCR/ GAN Leaks
Calibrated and provides additional insight into how the training
and synthetic data are distributed.

6.3 Challenges in Tabular Data Generation
A key challenge of generative modelling with tabular data is the
unstructured, high dimensional, mixed type nature of most datasets
[45]. This poses a challenge for newer results onmodel data-copying
and Membership Inference attacks that focus on density estimation.
[6] for example proposes a scheme of comparing local densities
of training data and synthetic data but does not frame their work
from an MIA perspective. Similarly, they provide a proof that their
method is not effective on non-smooth distributions that are char-
acteristic in the tabular domain. DOMIAS [41] evaluates overfitting
as an MIA by comparing a test point to the probability densities
of the synthetic and reference distributions. They propose two
options for estimating these densities in using a Gaussian Kernel
Density Estimator and a deep learning method called Block Neural
Autoregressive Flow (BNAF) [11]. We found however that these
methods have difficulty converging with high dimensional, mixed
type datasets. Indeed, the highest dimensional tabular dataset that
was benchmarked in DOMIAS was a private healthcare dataset that
when one-hot-encoded was 35 columns. Adult when similarly pre-
processed is 109 columns. All of our experiments with DOMIAS
failed to converge, leaving its results as being the equivalent of
random guess. Indeed the authors note a limitation of the work is
its reliance on BNAF in that it can take several hours to train. This
motivates this paper to consider a computationally easier paradigm
of analyzing local neighborhoods around test points.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose a novel measure of data-copying and
connect it to the Membership Inference Attack literature for tabu-
lar generative models. This allows the unique study of how local
data-copying contributes to risks in the trustworthiness of these
generators. Models that perform well in generating data with high
measures of utility tend to copy training data more than models
of a lower quality and thus have higher privacy risk profiles. Simi-
larly, we have shown that Tab-DDPM, a highly cited and studied
architecture egregiously copies outlier training data of privileged
sub-classes in a widely used fairness benchmarking dataset. This
indicates that data-copying can effect a variety of concepts, such as
fairness, used to evaluate the trustworthiness of generative models.

Data Plagiarism Index motivates a variety of directions for fu-
ture work. The disparate nature of the data-copying literature ne-
cessitates a broader theoretical framework in which to connect

data-copying to privacy. Similarly, this work has shown that data-
copying can affect different axis’ in which to evaluate the trustwor-
thiness of models. It would be interesting to further explore if it
also effects other aspects of Trustworthy AI such as robustness,
interpretability, and reliability. Lastly, DPI can be applied to Differ-
ential Privacy Auditing where it can be used to evaluate sharper
privacy lower bounds.
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A APPENDIX
A.1 Ablation study
DPI requires a practitioner to specify a distance metric and 𝐾 num-
ber of nearest neighbors in order to be deployed. This presents a
hyperparameter tuning problem as to what measure of distance
should be used and how large the neighbors should be. We replicate
the experiment from Section 5.4 but this time with common dis-
tance metrics (L1 and L2) as well as a variety of𝐾 sizes (5, 10, 20, 30).
We plot the means and standard deviations of the corresponding
DPI MIA attacks in Figure 7. While the success of the attacks vary
with lower sample sizes, each attack follows a clear trend with each,
eventually seeing smaller deviations at the maximum sample sizes.

A.2 Model Descriptions
In all experiments, we use the implementations of thesemodels from
the Python package Synthcity [35]. For benchmarking purposes we
use the default hyperparameters for each model. A brief description
for each model is as follows:

CTGAN [45]: (Conditional Tabular Generative Adversarial Net-
work) uses a GAN framework with conditional generator and dis-
criminator to capture multi-modal distributions. It uses mode nor-
malization to better learn mixed-type distributions.

TVAE [45]: (Tabular Variational Auto-Encoder) is very similiar
to CTGAN in its use of mode normalizing techniques, but rather
than using a GAN architecture, instead employees A VAE.

Normalizing Flows (NFlow) [12]: Normalizing flows trans-
form a simple base distribution (e.g. Gaussian) into a more complex
one matching the data by applying a sequence of invertible, differ-
entiable mappings.

Bayesian Network (BN) [4],: Bayesian Networks use a Directed
Acyclic Graph to represent the joint probability distribution over
variables as a product of marginal and conditional distributions. It
then samples the empiric distributions estimated from the training
dataset.

Adversarial Random Forests (ARF) [44]: ARFs extend the
random forest model by adding an adversarial stage. Random forests
generate synthetic samples which are scored against the real data
by a discriminator network. This score is used to re-train the forests
iteratively.

Tab-DDPM [23]: Tabular DenoisingDiffusion ProbabilisticModel
adapts the DDPM framework from image synthesis. It iteratively
refines random noise into synthetic data by learning the data dis-
tribution through gradients of a classifier on partially corrupted
samples with gaussian noise.

PATEGAN [49]: The PATEGAN model uses a neural encoder to
map discrete tabular data into a continuous latent representation
which is sampled from during generation by the GAN discriminator
and generator pair.

Ads-GAN [47]: Ads-GAN uses a GAN architecture for tabular
synthesis but also adds an identifiability metric to increase its ability
to not mimic training data.

A.3 Membership Inference Attack Descriptions
A description of each of the Membership Inference Attacks refer-
enced in the paper are as follows:

Figure 7: Ablation Results for Various Distance Measures and
𝐾 Size Choices.

LOGAN [17]: LOGAN proposes a variety of MIA strategies. A
black box version of their attack involves training a Generative
Adversarial Network (GAN) on the synthetic dataset and using
the discriminator to score test data. A calibrated version improves
upon this by training a binary classifier to distinguish between the
synthetic and reference dataset. In this paper we only benchmark
the calibrated version.

GAN Leaks/ GAN Leaks Calibrated [8]: GAN Leaks is a black
box attack that scores test data based on a sigmoid score of the
distance to the nearest neighbor in the synthetic dataset. GAN
Leaks Calibrated improves on this with the inclusion of a reference
set in which this distance is subtracted from the distance to the
closest record in the reference set.

MC [18]: MC is based on counting the amount of observations
in the synthetic dataset that fall into the neighborhood of a test
point (Monte Carlo Integration). However, they do not consider a
reference dataset and the choice of distance for what to consider a
neighborhood is a non-trivial hyperparameter to tune.

DOMIAS [41]: DOMIAS is a calibrated attack which scores test
data by performing density estimation on the synthetic and refer-
ence datasets to then calculate the probability ratio of the test data
being from the synthetic vs reference distributions.
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