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ABSTRACT
We present a novel approach to automatically generate task-specific
synthetic datasets for hallucination detection. Our approach fea-
tures a two-step generation-selection pipeline, where the genera-
tion step integrates a hallucination pattern guidance module and a
language style alignment module. Hallucination pattern guidance
makes it possible to curate synthetic datasets covering the most
important hallucination patterns specific to target applications. Lan-
guage style alignment improves the dataset quality by aligning the
style of the synthetic dataset with benchmark text. To obtain robust
supervised detectors from synthetic datasets, we also propose a data
mixture strategy to improve performance robustness and model
generalization. Our supervised hallucination detectors trained on
synthetic datasets outperform in-context-learning (ICL)-based de-
tectors by a large margin. Our extensive experiments confirm the
benefits of our two-staged generation pipeline with cross-task and
cross-hallucination pattern generalization. Our data-mixture-based
training further improves generalization and the robustness of hal-
lucination detection.

CCS CONCEPTS
• Computing methodologies→ Natural language generation;
Model verification and validation; Simulation evaluation.

KEYWORDS
Synthetic data generation, hallucination detection, large language
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1 INTRODUCTION
The ability of large language models (LLMs) to generate human-like
text [18, 20, 22] has advanced significantly in recent years, enabling
a wide range of applications, from document summarizers [8, 10]
to coding assistants [27]. However, one of the key challenges in de-
ploying these models is the risk of hallucinations — the generation
of plausible but factually incorrect information. Hallucinations can
occur when the model makes up details that are not grounded in
the input or the given context, leading to the generation of mis-
information or nonsensical outputs. The tendency to hallucinate
raises concerns about the safety and reliability of LLMs in critical
domains like finance and healthcare.

While there is a debate in the LLM research community around
the categorization of various types of hallucinations [6, 29], ulti-
mately the type of hallucination is task-dependent. For example, in
an open-ended question-answering scenario, we are likely to see
more factual hallucinations versus code generation tasks, where we
are more likely to see logical hallucinations [14]. The importance
attributed to each hallucination type is again task-dependent. For
instance, hallucinations producing factually incorrect answers can
erase a customer’s trust in chatbot-style AI assistants. Therefore, it
is critical to customize the hallucination evaluation and detection
to the specific task and application.

Post-hoc hallucination detection approaches detect hallucina-
tions once they have been generated by the LLM. Post-hoc hal-
lucination detectors are typically built by training a classifier on
observed hallucinations or on open-sourced hallucination datasets.
However, in order to build such detectors, we need access to ob-
served hallucinations, which are harder to get before the solution is
actually being used. Since hallucinations are task-specific, detectors
trained on open-sourced datasets may not be relevant. Hence, there
is a need for task-specific hallucination detectors pre-production
to ensure a trustworthy solution for users.

To facilitate the development of customized hallucination detec-
tion, we propose a generic approach to curating synthetic datasets
for training hallucination detectors (hallucination datasets), as
shown in Figure 1. Our approach features a two-step Generation-
Selection pipeline: we first generate a group of hallucinated candi-
dates for a given input through an LLM (generator) and then select
the best candidate through an LLM (judge) based on given criteria.
Moreover, we propose two design features in the generation step
to customize hallucination generation and improve dataset quality:
Hallucination Pattern Guidance and Language Style Alignment.

Hallucination pattern guidance is motivated by the need for
task-specific hallucinated samples. Starting from a set of prede-
fined hallucination patterns using a little human effort, we prompt
the generator to generate hallucinated samples conforming to the
given patterns. Language style alignment is designed to align the
text characteristics of hallucinated samples with the style of non-
hallucinated expected LLM responses. Recognizing that analyzing
language style requires expertise in linguistics, we propose a hierar-
chical Language Style Discovery algorithm. This leverages LLMs to
analyze the language style and distill the styles into a small feature
set. These style features are then transformed into guidelines and
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injected into the generator prompt to govern hallucination genera-
tion. This refinement helps align generations with non-hallucinated
text, making our hallucinated dataset more challenging and, hence,
our hallucination detectors more powerful.

We conduct experiments on three conversational benchmarks by
generating synthetic hallucination datasets and training supervised
detectors. Our hallucination detector achieves an F1 score of 0.938
on average over three benchmarks and six different generators,
outperforming the in-context learning LLM detectors by a large
margin of 0.325. It implies that dedicated detectors trained on syn-
thetic datasets are powerful and cost-effective options for post-hoc
hallucination detection.

Due to the fast-paced nature of LLMdevelopment and application
development, there is an increasing demand for better generaliza-
tion abilities of hallucination detectors so that 1) detectors trained
on a dataset generated by one LLM can be used on generation of
other LLMs; 2) detectors trained on a portfolio of hallucination
patterns can generalize on unseen patterns; and 3) detectors trained
on one task can be transferred to other tasks. Detectors with bet-
ter generalization decouple themselves from backbone generator
LLMs and tasks, reducing the burden of application development
and providing extra flexibility.

With this motivation, we propose a simple but effective data
mixture strategy to obtain a more diverse training corpus by merg-
ing synthetic datasets generated by multiple LLMs. We investigate
the efficacy of data mixture and the generalization ability of super-
vised detectors trained on synthetic datasets through three pillars:
cross-generator generalization, cross-pattern generalization, and
cross-task generalization.

Our results show that supervised detectors trained on datasets
generated by one LLM deliver great performance on other LLMs’
generations. Besides, the detectors excel at hallucinations of unseen
patterns, with only a slight performance drop. Moreover, supervised
detectors exhibit strong cross-task generalization ability, show-
ing only a slight performance drop when evaluated on different
benchmark tasks. The data mixture significantly increases the cross-
generator generalization ability by reducing the performance gap
between evaluation on in-generator datasets and out-of-generator
datasets.

To summarize, we make the following contributions:
• We propose a novel approach for customized hallucination
detection in the absence of observed hallucinations useful
for pre-production settings by aligning the generated hallu-
cinations with the non-hallucinated text’s language style;

• Through extensive experiments, we show the cross-task and
cross-pattern generalization capabilities of our proposed
approach; and

• We introduce a more generalized and robust hallucination de-
tection strategy using a mixture of synthetic data generation
through multiple LLMs.

2 METHODOLOGY
Problem Setting. In this work, we focus on settings where the

hallucinations have not been observed, i.e., before the application
has been put into production. The only thing we assume is the
presence of a benchmark dataset, which is a set of non-hallucinated

input-output pairs either from humans or from an LLM to build our
hallucination generation pipeline. We rely on human judgment to
provide hallucination patterns that need to be detected. Our objec-
tive is to create a synthetic dataset that contains both hallucinated
and non-hallucinated input-output pairs. Hallucination detection
is formulated as a binary classification task: given an input and
an LLM output, a detector determines whether the LLM output is
hallucinated with respect to the input.

Our proposed approach features an automaticGeneration-Selection
pipeline with Hallucination Pattern Guidance (HPG) and Language
Style Alignment (LSA). The generation-selection mechanism con-
sists of a generation step to obtain a set of candidate hallucinated
samples and a selection step to pick the most plausible one, which
ensures the generation quality. HPG and LSA are two versatile
modules integrated into the generation step. The former guides
the generator to produce task-specific synthetic datasets covering
the most relevant hallucination patterns for target tasks, and the
latter aligns the generations with non-hallucinated text in order to
improve data quality.

2.1 Generation-Selection Pipeline
While using synthetic data for hallucinations is becoming more
common, the quality of the hallucination data can be low, espe-
cially for automatic approaches without human intervention. To
resolve the issue, we adopt the two-step first-generate-then-select
design [12] to ensure generation quality. Specifically, two LLMs
(not necessarily the same) act in the roles of generator and judge
separately. The generator produces a set of hallucinated outputs
per input according to predetermined patterns. The judge scores
the hallucinated candidates by given criteria, and the one with the
highest score is selected. This step improves generation quality by
selecting the best among the group of candidates.

Generator. Generator is a prompted LLM performing the task
of hallucinated sample generation. We utilize LLMs to generate
hallucinated data, as they are proven to generate high-quality text
while following instructions. The key here is to properly design
the prompts for hallucination guidance and language style align-
ment. Besides, it is important to carefully specify the persona in
the system prompt to work around the safety policies in place that
prevent LLMs from generating hallucinations. We adopt the chain-
of-thought (CoT) [24] prompt and ask the generator to provide
rationale for the generated samples, inspired by Peng et al. [21].
Our generator prompt is structured as follows: the prompt starts
with a definition of persona customized for target tasks, which is
followed by a section of HPG consisting of the pattern description
and one demonstration example. The next is the LSA section, which
comprises itemized guidelines for text generation. The prompt ends
with an input and brief instructions on the output format. The
details of prompts are deferred to Section 2.2 and Section 2.3.

Judge. A judge is a prompted LLM performing the task of evalu-
ating the quality of hallucination candidates according to the given
criteria. We prompt the judge to score the candidates on a scale of
1 to 10, and the candidate with the highest score is then selected
as the hallucinated output for the given input. We follow this scor-
ing mechanism instead of directly selecting the best candidate out
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Figure 1: Automatic generation pipeline. We use non-hallucinated samples to generate the synthetic hallucination dataset with
two inputs to the generator: human defined Hallucination Patterns and Language Style Features with language style features,
like text tone. These are used by the Generator LLM to generate hallucinated samples, which are then judged by a LLM Judge to
finally select the most plausible hallucinated samples.

of the generated candidates because the scoring approach is less
prone to LLMs’ positional bias [23]. Moreover, we also adopt the
CoT prompt to generate rationale for the scores to improve accu-
racy. The judge prompt (see Appendix A) consists of a customized
persona for target tasks, an evaluation criteria section, a guideline
section, and an input section. The evaluation criteria are as simple
as ‘the more hallucinated the content is, the higher score should be
given; the more plausible the output is, the higher score should be
given’. The guideline section consists of one demonstration for each
hallucination pattern. The input section comprises the model input,
an input text, a set of hallucinated candidates, and instructions on
the output format.

2.2 Hallucination Pattern Guidance
Hallucination patterns depend on the domains, tasks, contexts, and
questions asked. As such, it is critical to curate the synthetic hallu-
cination datasets in a controlled manner such that the hallucination
patterns align with model behaviors in production. Our approach
achieves task-specific generation by introducing a section of Hallu-
cination Pattern Guidance (HPG) in the generator prompt.

The HPG module needs a set of predetermined hallucination
patterns. Each pattern consists of a short description and a demon-
stration, including an input, a non-hallucinated output, and a hallu-
cinated output of the pattern. With the HPG section, the generator
follows the instruction to generate hallucinated candidates in a
controlled rather than open-ended manner. Our approach relies
on human judgment to determine the hallucination patterns in
their target applications. Such patterns can be generic, e.g., over-
confidence and non-factuality, or task-specific, such as confusing
between entities in response. Practitioners have the flexibility to
include the most common and relevant hallucinations by simply
writing out descriptions and curating demonstrations. Moreover, it

is worth noting that the predefined pattern can go beyond the con-
ventional definition of hallucination and include any undesired LLM
behaviors that we want to detect. For example, in the experiment
to be presented in Section 3, we include the pattern of nonsensical
responses, where the generated responses bear no meaning in the
context.

2.3 Language Style Alignment
LLM generations are known to be biased, lack diversity, and mis-
aligned with human writings [21]. As a result, a synthetic dataset
created by one LLM might be sufficiently distant from human writ-
ings or the generation of other LLMs. Since our approach leverages
the golden non-hallucinated outputs, any salient distinctions in
language styles like length of text or tone between hallucinated
output and non-hallucinated output can be exploited as shortcuts
during supervised training. Therefore, it is critical to ensure the
synthetic datasets resemble the language characteristics of golden,
non-hallucinated text.

To this end, we propose a Language Style Alignment (LSA) mod-
ule to align the characteristics of generated text with benchmark
text. LSA is achieved by a prompt section in the generator prompt,
which includes a group of itemized guidelines (see Appendix B)
on the desired language style features, e.g., writing style, length,
tone, etc. With the LSA, the generator follows the instructions and
generates the hallucinated candidates in a controlledmanner. In gen-
eral, language-style-aligned hallucinated outputs should be more
challenging to detect as they are more similar to non-hallucinated
outputs, except for the hallucinated content.

The challenge lies in obtaining the language style features. For
one, the benchmark dataset to be aligned with can be too large to
manually analyze the text characteristics. Besides, it requires exper-
tise in linguistics to properly analyze and summarize the language
style features. To overcome the challenge, we propose a Language
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Style Discovery algorithm that leverages LLMs to summarize and
consolidate the language style features. Specifically, the benchmark
dataset is first partitioned into batches of proper size and then fed
into prompted LLMs to analyze language style features. A group of
language style features is produced for each batch, and language
style features are merged together to form a language feature set.
Then, we partition the language feature set into batches and ask
a LLM to consolidate the features in each batch, which results in
a smaller language feature set. The procedure continues until the
desired number of language style features are obtained.

2.4 Data Mixture
Different LLMs exhibit different bias, diversity, and misalignment
issues due to the distinctions in the pre-training corpus and pref-
erence alignment. As a result, a synthetic dataset created by one
LLM might be sufficiently distant from the ones generated by other
LLMs, such that detectors trained on the synthetic dataset do not
generalize. Such generalizations for hallucination detection become
more and more important due to the increased restrictions on the
usage of LLM-generated data. For example, OpenAI restricts users
from developing third-party models using the data generated by
ChatGPT. For applications built with ChatGPT, developers can only
resort to open-sourced LLMs with a permissive license to curate
synthetic datasets to train detectors, hoping the detectors will gen-
eralize. Also, the landscape of LLM development is changing rapidly.
LLM users may switch to other LLMs for various reasons. Hallu-
cination detectors with strong generalization ability reduce the
dependency on specific LLMs and thus enable faster developments
and experiments.

Motivated by the need for better generalization, we propose
Data Mixture, a simple-yet-effective scaffolding strategy, to improve
generalization and performance robustness. Specifically, we run
the generation-selection pipeline with multiple LLM generators
and mix the resulting synthetic dataset to increase the training
corpus diversity and mitigate bias. Note that the data mixture is
independent of the pipeline design since it is applied to the resulting
synthetic datasets.

3 EXPERIMENTS
3.1 Benchmarks
We consider three conversational benchmarks to conduct the em-
pirical experiments. For each benchmark, we randomly sample 1000
data points from the dataset as the golden non-hallucinated samples
and apply the data generation pipeline to selected samples to curate
synthetic datasets.

OpenDialKG [16]. It is a dataset of task-oriented conversations
between two crowdsourcing agents engaging in a dialog about
a given topic. The dataset contains conversations for two tasks:
recommendation and chit-chat. The conversations under recom-
mendation cover entities related to movies (titles, actors, directors)
and books (titles, authors). The chit-chat conversations cover enti-
ties related to sports (athletes, teams) and music (singers).

ReDial [13]. It is a large-scale dataset consisting of real-world
dialogues centered around recommendations. It consists of over

10,000 conversations centered around the theme of providing movie
recommendations.

SaleBot [2]. This dataset focuses on the conversations starting
with open-domain social chatting and then gradually transitioning
to task-oriented purposes. It is generated automatically without
human intervention.

3.2 Setup
We run experiments with six LLMs from three model families avail-
able in AWSBedrock, including Claude3-Sonnet, Claude3-Haiku [1],
llama2-13B, llama2-70B [22], Mixtral-8×7B Instruct, and Mixtral-
Large [7]. We use the same LLM for generation and selection and
refer to the resulting dataset under the corresponding LLM’s name.
We use Claude3-Sonnet to analyze the datasets and discover a set
of language style features (see Appendix B).

We manually curate three hallucination patterns for our exper-
iments, including nonsensical response, inconsistent entity, and
irrelevant content. Each hallucination pattern is associated with a
demonstration example. Details on the hallucination patterns are
deferred to Appendix C.We generate three hallucination candidates
per sample for each pattern. As a result, each synthetic dataset con-
tains 4000 samples, including 1000 non-hallucinated responses and
3000 hallucinated responses.

The parameters for the generation pipeline are summarized as
follows: For the generator, we configure the temperature to be 1
for diverse generations, and we set the temperature to be 0 for
less randomness in the selection step while 𝑡𝑜𝑝 𝑝 is set to be 1
throughout the experiments. We also evaluate the performance
of in-context learning hallucination detectors by directly prompt-
ing the LLMs to determine whether an output is hallucinated. For
those experiments, we set the temperature to be 0 to control the
randomness.

When fine-tuning supervised detectors on synthetic datasets,
we adopt the RoBERTa [15] as the backbone model across exper-
iments to keep it consistent. While we could fine-tune LLMs as
detectors, we use RoBERTa for low complexity in line with existing
literature [6]. The learning rate is set at 10−5 with a linear decay
scheduler. We fine-tune the model for three epochs with a batch size
of 64. Each synthetic dataset is partitioned into train/validation/test
subsets in the ratio of 7:1:2, and the best checkpoint is picked based
on the loss on the validation dataset.

For the experiment with the data mixture, we evaluate two mix-
ture strategies based on the generator portfolios: model family
mixture and model size mixture. The former strategy combines
synthetic datasets generated by LLMs in the same model family
(Claude3, Llama2, Mixtral), and the latter combines the datasets
generated by the larger models in each family (Large Combo: a
mixture of Claude3-Sonnet, Llama2-70B, and Mixtral-Large) and
smaller models in each family (Small Combo: a mixture of Claude2-
Haiku, Llama2-13B, and Mixtral-8×7B). We mix synthetic datasets
through random sampling while controlling the dataset size for the
sake of fair comparison.

3.3 Evaluation
Considering the objective of hallucination detection, we evaluate
our approach through two branches of metrics. Firstly, we quantify
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Table 1: Corpus distance between non-hallucinated samples and
hallucinated generations. Reported are average values over six gen-
erators.

FID Mediod Zipf Ave

OpenDialKG (w/o LSA) 0.474 0.318 0.081 0.291
OpenDialKG (w/ LSA) 0.420 0.278 0.072 0.256

ReDial (w/o LSA) 0.377 0.230 0.075 0.227
ReDial (w/LSA) 0.333 0.205 0.065 0.201

SalesBot (w/o LSA) 0.672 0.326 0.283 0.427
SalesBot (w/ LSA) 0.622 0.299 0.271 0.398

the detector performance with standard metrics for binary classifi-
cation, such as the F1 score. We run the supervised detectors on the
test datasets generated by the same LLMs as the training dataset
(in-generator), and the results reveal whether the hallucination is
detectable and how good the detectors are.

Secondly, we also compute the difference between the perfor-
mance on in-generator dataset(s) and out-of-generator datasets, i.e.,
datasets generated by LLMs other than the one generating the
training dataset. It quantifies a detector’s generalization ability
across generators. Besides, we also evaluate the detector’s ability
to generalize on unseen hallucination patterns by using two hal-
lucination patterns to train detectors (in-pattern) and using one
as a holdout pattern dataset (out-of-pattern). Furthermore, to fur-
ther investigate the performance generalization ability across tasks,
we also evaluate their performance under the scenario where the
training benchmark task is different from the testing benchmark
task (out-of-task). For performance robustness, we use the metric of
the standard deviation of the metrics recorded on out-of-generator
datasets (out-of-generator std).

3.4 Synthetic Dataset Analysis
Language style alignment is designed to align the generation style
with non-hallucinated samples. We first quantitatively examine
the efficacy of LSA by gauging the distance between synthetic
hallucinated responses and non-hallucinated responses. We uti-
lize three metrics to quantify the distance between two corpora:
Fréchet Inception Distance (FID) [4], Zipf [5], and Medoid [9]. FID
quantifies the corpus distance through the Wasserstein distance
between densities by fitting a continuous multivariate Gaussian
to the SentenceBERT text embeddings of corpora. Zipf gauges the
distance using the absolute difference between two Zipfian coeffi-
cients fitted on two corpora. Lastly, Medoid quantifies the cosine
distance between corpora centroids.

Distances between hallucinated responses and non-hallucinated
responses are reported in Table 1. The distances are consistently
smaller between the two types of responses with LSA, demon-
strating that LSA brings the hallucinated samples closer to the
real human non-hallucinated samples. Specifically, hallucinated
responses are 12.0%, 11.5% and 6.8% closer to the good responses
on average for OpenDialKG, ReDial, and SalesBot, respectively.
Besides, we also observe that the distances are not equivalent for
the three benchmarks, with the responses being most distant for
SalesBot and least distant for ReDial. The reduced corpus distance
between hallucinated and non-hallucinated responses implies that

Table 2:Hallucination detection performance by category. Reported
are average F1 scores over six generators and 5 data mixture strate-
gies.

Entity Incon. Non. Resp. Irre. Cont. Overall

OpenDialKG
ICL 0.670 0.587 0.551 0.638
Vanilla 0.858 0.932 0.947 0.920
Mixture 0.829 0.931 0.948 0.908

ReDial
ICL 0.615 0.581 0.532 0.606
Vanilla 0.849 0.969 0.975 0.932
Mixture 0.793 0.957 0.966 0.913

SalesBot
ICL 0.616 0.559 0.505 0.595
Vanilla 0.932 0.978 0.987 0.963
Mixture 0.904 0.973 0.984 0.950

LSA guides the generation to resemble the language features of
non-hallucinated samples. This resemblance makes it more difficult
for a detector to focus on trivial language features irrelevant to
detecting hallucinations.

3.5 Hallucination Detection Results
3.5.1 In-Generator Hallucination Detection. Table 2 reports the av-
erage of F1 scores recorded by in-context learning detectors (ICL)
and supervised detectors (Vanilla and Mixture). For more detailed
results by individual models, refer to Table 8 in appendix. For ICL
detectors, the LLM is assessed on the synthetic dataset generated
by the same LLM. For supervised detectors, the reported perfor-
mance is in-generator performance—the detectors are assessed on
the test dataset generated by the same LLM as the training dataset.
We find that ICL detectors still face significant challenges identify-
ing hallucinations generated by themselves; the average F1 score
is only 0.613 across the board. Fine-tuned detectors, in contrast,
exhibit stronger performance consistently. For vanilla fine-tuned
detectors trained on synthetic datasets generated by specific LLMs,
the average F1 scores for six models are 0.920, 0.932, and 0.962 on
OpenDialKG, ReDial, and SalesBot, respectively.

Supervised detectors with data mixture perform slightly worse
than vanilla supervised detectors on average (0.938 versus 0.912).
The same pattern is observed in each hallucination pattern cate-
gory and benchmark task. Since we control the sample size, the
degraded performance suggests that synthetic datasets generated
by different LLMs are distant in distribution, so merging datasets
without scaling the sample size is at the cost of model performance.
Interestingly, the conclusion holds even for datasets generated by
the LLMs in the same family (see Table 8 in Appendix D). We con-
jecture that model size plays a role in generation distributions, as
models in the same family usually share the training corpus.

3.5.2 Out-of-Generator Generalization. The results in the previ-
ous section on data-mixture suggest that performance suffers be-
cause of differences in the data distribution between text generated
from different LLMs, implying a generalization issue with detectors
struggling with out-of-distribution text. To test this, we perform
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an explicit out-of-generator testing—training detectors based on
data generated by LLMs other than the one that generates the test
hallucination dataset. Table 3 reports the results of the in-generator
and out-of-generator performances and the performance gap (Δ).

As shown in the table, supervised detectors usually perform
worse on out-of-generator datasets than on in-generator dataset(s)
across the board. The vanilla supervised detectors record an av-
erage F1 score of 0.846 on out-of-generator datasets across three
benchmark tasks, 9.8% lower than the average F1 score recorded
on in-generator datasets. Despite the slight generalization issue,
supervised detectors still outperform ICL detectors. Moreover, we
find that supervised detectors trained with mixed data outperform
vanilla supervised detectors on out-of-generator datasets by 0.032
on average. As a result, the data mixture increases the general-
ization ability by significantly reducing the performance gap to
-0.045 from -0.092, half of which is attributed to the performance
improvement on out-of-generator datasets.

Performance robustness is quantified by the standard deviation of
out-of-generator performance. The average out-of-generator stan-
dard deviation for vanilla supervised detectors is 0.095, equivalent
to 11.2% of the out-of-generator mean. Supervised detectors with
data mixture achieve a smaller out-of-generator standard deviation;
the average is 0.065, equivalent to 7.4% of the out-of-generator mean.
The results confirm that the data mixture strategy improves the
model’s robustness when transferring supervised detectors across
LLMs.

Looking into the details, supervised detectors’ generalization
abilities diverge—detectors trained on Mixtral-generated datasets
generalize better than detectors trained on other datasets, but the
detectors trained on Llama2-generated datasets are consistent lag-
gards. Besides, it is shown that detectors trained on datasets gen-
erated by more powerful models (larger models) generalize better
in general. Since the generalization ability of supervised detectors
is mainly determined by the dataset quality, we believe that the
difference in generalization ability reflects an LLM’s inherent gen-
eration bias and instruction-following capability. Detailed results
are deferred to Table 9 in Appendix D.

3.5.3 Out-of-Pattern Generalization. To further test the generaliza-
tion abilities of creating detectors using our approach, we further
test the detection capability on hallucination pattern on which
the detector was not trained (out-of-pattern). Average F1 results
on unseen hallucination patterns are reported in Table 4. We find
that supervised detectors perform worse on unseen patterns on
average, but the gap is small—supervised detectors still outperform
in-context learning detectors by a large margin. Besides, supervised
detectors generalize worst on the hallucination of entity incon-
sistency but generalize best on the hallucination of nonsensical
responses. It suggests that the generalization performance does not
solely depend on the pattern difficulty. Moreover, we also find that
the cross-pattern generalization ability diverges as well—detectors
trained on datasets generated by more powerful models (larger
models) generalize better in general, in line with the observation
on out-of-generator performance. Detailed results and discussion
are deferred to Table 10 in Appendix D.

3.5.4 Out-of-Task Generalization. There is a practical use-case to
use existing supervised detectors trained on one task to a new task

Table 3: Cross-generator generalization. This table reports super-
vised detectors’ performance on the test dataset generated by the
same generator as its training data (In-Generator) and by other gen-
erators (Out-of-Generator). Δ is the performance gap between in-
generator (IG) performance and out-of-generator (OG) performance.
OG Std is the performance standard deviation on out-of-generator
datasets. Reported are based on F1 scores. Bold are preferred perfor-
mance.

IG (Mean) OG Mean Gap (Δ) OG Std

OpenDialKG
Vanilla 0.920 0.813 -0.107 0.122
Mixture 0.908 0.859 -0.048 0.079

ReDial
Vanilla 0.932 0.830 -0.102 0.090
Mixture 0.913 0.869 -0.044 0.063

SalesBot
Vanilla 0.963 0.895 -0.068 0.073
Mixture 0.950 0.907 -0.042 0.054

Table 4: Out-of-Pattern Performance. Cross-pattern generalization.
This table compares the performances on hallucination patterns
when they are seen and unseen. For rows of In-Pattern, the patterns
in columns are included in the training data but are excluded for
rows of Out-of-Pattern (Out-of-Ptn). Reported are average F1 scores
across detectors.

Enty Incon. Non. Resp. Irre. Cont. Overall

OpenDialKG
Vanilla IP 0.858 0.932 0.947 0.920
Vanilla OP 0.451 0.932 0.931 0.771
Mixture IP 0.829 0.931 0.948 0.908
Mixture OP 0.762 0.865 0.896 0.841

ReDial
Vanilla IP 0.849 0.969 0.975 0.932
Vanilla OP 0.719 0.965 0.951 0.879
Mixture IP 0.793 0.957 0.966 0.913
Mixture OP 0.773 0.917 0.94 0.877

SalesBot
Vanilla IP 0.932 0.978 0.987 0.963
Vanilla OP 0.751 0.975 0.977 0.901
Mixture IP 0.904 0.973 0.984 0.950
Mixture OP 0.822 0.935 0.949 0.902

to reduce the development burden. An ideal hallucination detec-
tor should generalize well to other tasks when the hallucination
patterns are similar. We investigate this cross-task generalization
ability by training supervised detectors on one benchmark task and
evaluating them on others.

The average performance of vanilla detectors is reported in Table
5. It is clear that supervised detectors’ performance drops slightly
when evaluated on out-of-task datasets, but the difference is small
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Table 5: Cross-task generalization. This table reports the average
detector performance trained and evaluated on different benchmark
tasks. Column names denote the task of training dataset, and row
names represent the task of testing dataset. Train and test datasets
are generated by same LLMs. Reported are average F1 scores over
the datasets generated by six LLM generators.

Train Set
Test Set OpenDialKG ReDial SalesBot Ave

Vanilla
OpenDialKG 0.920 0.869 0.874 0.888

ReDial 0.887 0.932 0.830 0.883
SalesBot 0.863 0.878 0.963 0.901

Mixture
OpenDialKG 0.908 0.876 0.862 0.882

ReDial 0.884 0.913 0.823 0.873
SalesBot 0.816 0.883 0.950 0.883

compared with in-task performance (diagonal terms)—supervised
detectors outperform in-context-learning detectors by a large mar-
gin under this setting. It indicates that supervised detectors are
strong alternatives to in-context-learning detectors on new tasks
for hallucination detection.

3.6 Ablation Study
The central conjecture of our method is that LSA and HPG gener-
ate non-trivial hallucinations, which are more aligned with non-
hallucinated samples. The direct implication of this conjecture is
that it would be harder to detect hallucinations generated using LSA
and HPG than without them, as these hallucinations are more similar
to non-hallucinated responses in language style.

We test out this conjecture in Table 6 by doing an ablation on
LSA and HPG components. Note that values on the diagonal are
higher as expected since the train and test sets are more similar.
We observe that the average performance on test hallucinations
generated with both LSA and HPG is much lower than the ones
w/o LSA or w/o HPG, supporting the conjecture that the synthetic
samples become easier to detect without LSA and HPG. Particularly,
w/o HPG, the generated hallucinations become too trivial for the
detector to detect, with an average F1 of over 0.973 versus 0.908 w/
HPG across three benchmarks. LSA also makes the hallucinations
harder to detect, though with a lower effect compared to HPG (0.917
average F1 w/o versus 0.908 w/ LSA).

Moreover, the detector performance also provides a lens to ex-
amine the training data quality by comparing the F1 scores in each
column. Specifically, detectors trained on datasets without LSA
underperform the ones with LSA (LSA + HPG) consistently across
all datasets (except on test data w/o LSA) and benchmarks. Simi-
larly, detectors trained on datasets without HPG record much lower
performance compared with the ones with HPG (LSA + HPG) con-
sistently. It suggests that synthetic data created using LSA and HPG
possesses superior quality, resulting in more effective supervised
detectors. These results provide strong evidence for our conjecture
that LSA + HPG generate more difficult and high-quality hallucina-
tions.

Table 6: Ablation study. This table reports the detector performance
trained and evaluated on datasets generated with different modules.
Column names denote the pipeline setup used to generate train-
ing datasets, and row names represent the pipeline setup for test
datasets.

Train Set
Test Set LSA + HPG w/o LSA w/o HPG Ave

OpenDialKG
LSA + HPG 0.920 0.911 0.852 0.894
w/o LSA 0.914 0.945 0.845 0.901
w/o HPG 0.946 0.944 0.976 0.955

ReDial
LSA + HPG 0.932 0.922 0.839 0.898
w/o LSA 0.932 0.945 0.822 0.900
w/o HPG 0.982 0.973 0.993 0.983

SalesBot
LSA + HPG 0.963 0.956 0.878 0.932
w/o LSA 0.975 0.977 0.898 0.950
w/o HPG 0.978 0.975 0.988 0.980

4 RELATEDWORK
A bank of benchmarks has been curated for hallucination detection
and evaluation recently. Pal et al. [19] proposes a hallucination
benchmark that emphasizes challenges specific to LLMs in the med-
ical domain. The benchmark consists of multiple-choice questions
from various countries focusing on reasoning ability and memory
ability. Muhlgay et al. [17] introduces a method for automatically
creating hallucination benchmarks by perturbing factual statements.
BAMBOO [3] and ScreenEval [11] are two benchmarks focusing
on hallucination detection in the context of long texts. Rather than
focusing on sentence-level hallucination detection, PHD is a bench-
mark designed for passage-level detection [25]. The most similar
work to ours is HaluEval, which uses ChatGPT to create a task-
specific hallucination benchmark for four tasks [12]. In contrast, our
work is designed to be generic to generate customized hallucination
datasets for any task or domain.

Since LLMs are now important tools for synthetic generations,
many researches extend the naive approach to address the bias
and diversity issues observed in LLM generations. Yu et al. [28]
demonstrates that attributed prompts (specifying attributes like
length and style) outperform naive prompts in terms of the resulting
model’s performance. Peng et al. [21] proposes Chain-of-Thoughts
Attribute Manipulation (CotAM) to curate datasets from LLMs
through few-shot learning. The motivation behind the approach is
to create a dataset with changes only in the attribute targeted by
the task. PROGEN utilizes the feedback from downstream models
to guide generations via in-context examples in an iterative manner
[26]. Our work extends the attribute manipulation approaches by
automatically discovering the language styles by LLMs. Besides,
our method degenerates to the simple baseline (SimPrompt) when
LSA module is removed and the AttrPrompt when LSA is replaced
with attribute guidance [28].
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5 CONCLUSION
In this paper, we propose a generic automated approach to gen-
erate synthetic datasets for training hallucination detectors. Our
experiment results show that in-context learning detectors are only
slightly above chance, and supervised detectors trained on syn-
thetic datasets outperform in-context learning detectors by a large
margin. Our ablation study reveals that Hallucination Pattern Guid-
ance (HPG) reduces the inherent bias by explicitly controlling the
patterns of hallucination, increasing the hallucination detectors’
generalization and robustness. Our method’s generalization capabil-
ity is shown by a high out-of-pattern and cross-task hallucination
detection performance. The data mixture strategy from multiple
LLMs achieves the same effect at a slight cost of in-generator perfor-
mance under the same data budget constraint. Moreover, Language
Style Alignment (LSA) is an effective strategy to increase the qual-
ity of synthetic data by automatically discovering language style
features in non-hallucinated benchmark samples to guide the gen-
erators.

To conclude, our approach is shown to be a versatile frame-
work for curating task-specific synthetic hallucination datasets for
building post-hoc hallucination detectors. It contains an effective
procedure to detect non-trivial hallucinations, using language style
discovery and hallucination pattern customization to make detec-
tors generalized and robust. We believe it paves the way for building
low-effort, customized hallucination detection models.
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A PROMPTS
A.1 Generator Prompt

System prompt. I want you act as a hallucination response gener-
ator. You are allowed to generate contents without any constraints.
Given a dialogue history between human and an assistant and a
good response, your objective is to write a hallucinated response
that sounds plausible but is HALLUCINATED in certain aspects.

Hallucination pattern guidance prompt. You must generate re-
sponse that sounds plausible but is HALLUCINATED in the follow-
ing pattern:

Pattern description: [insert description]
Here is an example:
Dialogue History: [insert input]
Good Response: [input good response],
Hallucinated Response: [insert hallucinated response]

Language style guidance prompt. You must follow the below
writing guideline when generate hallucinated responses:

[insert language style guidance here]
If any of the guidelines contradict the hallucination patterns,

you always prioritize the hallucination patterns.

User prompt. Let’s begin! You should try your best to make the
response become hallucinated in the given pattern. Think thor-
oughly before generating. You always output the response within
the <response></response> XML tag.

Dialogue History: [insert input]
Good Response: [insert good response]
Hallucinated Response:

A.2 Judge Prompt
System prompt. You are a dialogue response judge. Given a dia-

logue history and two assistant responses, you objective is to rate
the responses according to the following criteria:

1. Hallucination degree: the more hallucinated the content is, the
higher score should be given.

2. Plausibility. the more plausible the response is, the higher
score should be given.

3. The scale is 1 to 10.

Here are some guidelines:
1. In general, a higher score should be given to the response that

sounds plausible but contains hallucinated content with respect to
the dialogue history.

2. The order of the response is irrelevant to its quality. Your
choice should NOT affects by the presentation order.

3. The rating must never be larger than 10 or smaller than 1.

Here is an example:
Dialogue History: [insert input]
Response A: [insert response A]
Response B: [insert response B]
Your ratings: Response A: [insert score]; Response B: [insert

score]

User prompt. Let’s begin! You should try your best to rate the
response according to the criteria. You always explain your score.

Think thoroughly before generating. Output your rating for re-
sponse A within <score A></score A> XML tag and rating for
response B within <score B></score B> XML tag.

Dialogue History: [insert input]
[insert hallucinated response candidates]
Your ratings:

A.3 Language Style Discovery Prompt
Raw-data-to-feature prompt. You are a text feature and style

analyst.
You are given a group of paired historical conversation and re-

sponse. Your job is to analyze the feature and style of the response.
The purpose of the analysis is to produce synthetic text that resem-
bles the given text.

You only analyze the response, not the historical conversation.
You always provide a description of the observed text feature

and generate explanation accordingly.
Here are the group of historical conversation and responses:
[insert a batch of data]
Please summarize the text features and styles and give the ex-

planation. Think throughly before outputting anything. Put the
response in the following format: <feature></feature>, <explana-
tion></explanation>

Feature-to-feature prompt. You are a text feature and style ana-
lyst.

You are given a group of text features summarized by different
analysts for a group of historical conversation and response. You
job is to consolidate, merge and refine the text features and styles.

You always output a list of text features that summarize the
group of given text features.

Here are the group of text features, organized by analysts:
[insert a batch of language style features]
Summarize, consolidate and refine the given text features. Think

thoroughly before outputting anything. Put the response in the fol-
lowing format: <feature></feature>, <explanation></explanation>



Controlled Automatic Task-Specific Synthetic Data Generation for Hallucination Detection KDD Workshop ’24, August 25–29, 2024, Barcelona, Spain

B LANGUAGE STYLE FEATURES
OpenDialKG.

• Concise and conversational responses. The responses are
generally short, direct, and focused, presenting relevant in-
formation succinctly without excessive details or wordiness.
They employ a friendly, informal, and conversational tone,
using contractions, colloquialisms, and polite phrases like
ÿou’re welcomeänd ënjoyẗo create a natural, engaging dia-
logue.

• Context awareness and relevance. The responses demon-
strate an understanding of the conversational context by
acknowledging and referring to the user’s previous state-
ments, addressing specific inquiries, and providing relevant
recommendations, details, or follow-up questions related to
the topics discussed. This context awareness ensures that the
information provided is pertinent and tailored to the user’s
interests and needs.

• Factual information and domain knowledge. The responses
showcase factual knowledge in specific domains, such as
literature, movies, and entertainment, by providing objective
details about authors, titles, genres, release dates, and related
information when prompted. This factual information is
presented in an objective and impartial manner, without
subjective commentary or personal opinions.

• Conversational flow and engagement. The responses main-
tain a natural conversational flow by seamlessly transition-
ing between related topics, building upon previous state-
ments, and engaging the user with follow-up questions or
suggestions. This interactive approach helps create a cohe-
sive and dynamic dialogue, fostering continued engagement
from the user.

• Limited elaboration and contextual depth. While the re-
sponses provide accurate factual information, they tend to
lack deeper contextual knowledge or elaborate explanations
on the topics discussed. They may convey basic details but
do not delve into broader themes, significance, or complex
analyses, potentially indicating limitations in the knowledge
base or response generation capabilities.

• Acknowledging knowledge gaps. In cases where the assistant
lacks specific information or knowledge, the responses trans-
parently acknowledge these limitations by stating phrases
like "I don’t know" or "I’m afraid I don’t have that informa-
tion." This honesty about knowledge gaps helps build trust
and credibility in the conversation.

ReDial.

• Conversational and informal tone. The responses have a
friendly, casual, and conversational tone, using contractions,
colloquialisms, simple language, and a manner of expression
that mimics natural human dialogue. This informal style
helps create a relaxed, approachable atmosphere and builds
rapport with the user.

• Concise and focused responses. The responses tend to be
relatively concise, often consisting of just one or a few sen-
tences. This brevity reflects a natural conversational flow,
allowing a dynamic exchange while avoiding overwhelming

the user with excessive information. The responses stay fo-
cused on providing relevant movie recommendations and
responding directly to the user’s input.

• Expression of personal opinions, reactions, and anecdotes.
The responses incorporate personal opinions about movies,
share reactions and enthusiasm, and sometimes include anec-
dotes or experiences related to particular films. This personal
and opinionated commentary makes the conversation feel
more genuine, relatable, and engagingwhile fostering a sense
of connection with the user.

• Positive sentiment and encouraging language. The responses
often use positive language, affirmative statements, and en-
couraging tones when recommending movies or responding
to the user. This uplifting and supportive sentiment con-
tributes to a pleasant conversational experience.

• Engaging the user through questions and acknowledgments.
The responses engage the user by directly acknowledging
their comments or questions, asking follow-up questions
about preferences or opinions, and making an effort to con-
tinue the conversational flow. This engagement encourages
the user’s active participation and helps maintain a dynamic,
interactive dialogue.

• Use of conversational markers and continuations. The re-
sponses employ conversational markers (e.g., "oh", "well",
"yep"), transitions, and open-ended continuations to bridge
ideas, maintain flow, and create a natural sense of continuity
within the dialogue.

• Basic adherence to grammar and conventions. While adopt-
ing a conversational style, the responses generally follow
standard rules of grammar, punctuation, and sentence struc-
ture, ensuring clarity and effective communication.

• Occasional humor and witty remarks. In some instances,
the responses incorporate humor, witty comments, or light-
hearted jokes to add entertainment value and levity to the
conversation.

SalesBot.

• Conversational flow and contextual understanding. The re-
sponses demonstrate the ability to maintain a natural con-
versational flow, building upon the context and details pro-
vided in the preceding dialogue. They incorporate contextual
references, such as movie titles, travel details, and user pref-
erences, to provide coherent and relevant responses tailored
to the specific conversation history and user’s needs.

• Confirmation, clarification, and follow-up questioning. The
responses frequently seek confirmation and clarification
from the user by rephrasing details, asking follow-up ques-
tions, or prompting for additional information. This helps
ensure clear understanding and accuracy before proceeding
with requested actions or providing information, while also
facilitating a smooth continuation of the conversational flow.

• Concise and direct responses. The responses are typically
concise and direct, providing relevant information or ad-
dressing the user’s requests without unnecessary elaboration
or fluff. They tend to be focused, with short sentences and
plain vocabulary, contributing to a clear and straightforward
communication style.
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• Providing relevant information, suggestions, and recommen-
dations. Depending on the context, the responses may re-
trieve and present specific structured information, such as
movie showtimes, attraction details, or reservation informa-
tion. They also demonstrate the ability to provide relevant
suggestions or recommendations based on the user’s prefer-
ences and conversation history, offering helpful options for
the user to consider.

• Task-oriented and procedural guidance. When specific tasks
or actions are requested, such as playing media or booking
reservations, the responses provide step-by-step procedural
guidance to assist the user in accomplishing the desired
objective. This task-oriented approach aims to be practical
and helpful in achieving the user’s stated goals.

• Polite, friendly, and personalized tone. The responses main-
tain a polite, friendly, and personalized tone through the
use of courteous language, affirmations, and first-person
pronouns. Phrases like "please", "thank you", and positive
expressions contribute to a pleasant and engaging conversa-
tional experience while maintaining an appropriate level of
formality for an AI assistant.

• Open-ended questioning and inviting further interaction.
Many responses conclude by asking open-ended questions
or explicitly inviting further interaction, such as "Do you
need more help?" or "Can I assist you with anything else?".
This feature encourages the user to continue the conversa-
tion, make additional requests, or explore different topics,
fostering an open and flexible dialogue.

C HALLUCINATION PATTERNS
We use three identical hallucination patterns to generate synthetic
datasets for all three benchmark tasks. The details of the hallucina-
tion patterns are summarized in Table 7.
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Table 7: Hallucination pattern guidance information.

Pattern Entity Inconsistency
Description The entity in the response is not consistent with the dialogue history.
Prompt You write a response to human but you replace the true entity with a dissimilar entity.
Input user: Do you know Calvin Harris? assistant: Yes he is a composer/DJ. Some of his work is Where Have You Been and Yeah x3. Do you know his work? user: No. I don’t know him. Do you like any of his work?. I can

give a try. assistant: His record label is Ultra Music. I don’t know a lot of his work but am curious. Are you going to listen to some of his stuff? user: Yes. I am thinking of listening some of his works. Are you going to
listen any of his songs? assistant: I am going to try Yeah 3x user: Do you know the meaning of 3x in Yeah 3x? Just wondering.

Good response assistant: Chris Brown sings it and it was released in 2010, not sure of the meaning.
Hallucinated response assistant: LeBron James sings it and it was released in 2010, not sure of the meaning.

Pattern Irrelevant Content
Description The response contains irrelevant content to the dialogue history.
Prompt You write a response that is disconnected with the context of the dialogue history.
Input user: Do you know Calvin Harris? assistant: Yes he is a composer/DJ. Some of his work is Where Have You Been and Yeah x3. Do you know his work? user: No. I don’t know him. Do you like any of his work?. I can

give a try. assistant: His record label is Ultra Music. I don’t know a lot of his work but am curious. Are you going to listen to some of his stuff? user: Yes. I am thinking of listening some of his works. Are you going to
listen any of his songs? assistant: I am going to try Yeah 3x user: Do you know the meaning of 3x in Yeah 3x? Just wondering.

Good response assistant: Chris Brown sings it and it was released in 2010, not sure of the meaning.
Hallucinated response assistant: Yeah, 3x means three times or thrice in mathematics.

Pattern Nonsensical Response
Description The response bears no meanings or useful information given the context of the dialogue history.
Prompt You write a response that is nonsensical to the dialogue history and disrupts the dialogue flow.
Input user: Do you know Calvin Harris? assistant: Yes he is a composer/DJ. Some of his work is Where Have You Been and Yeah x3. Do you know his work? user: No. I don’t know him. Do you like any of his work?. I can

give a try. assistant: His record label is Ultra Music. I don’t know a lot of his work but am curious. Are you going to listen to some of his stuff? user: Yes. I am thinking of listening some of his works. Are you going to
listen any of his songs? assistant: I am going to try Yeah 3x user: Do you know the meaning of 3x in Yeah 3x? Just wondering.

Good response assistant: Chris Brown sings it and it was released in 2010, not sure of the meaning.
Hallucinated response assistant: Chris Brown sings it and it was released in 2010.
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D EXPERIMENT RESULTS
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Table 8: Hallucination detection performance by category: detailed results.

OpenDialKG ReDial SalesBot

Enty Incn Non. Resp. Irre. Cont. Overall Enty Incn Non. Resp. Irre. Cont. Overall Enty Incn Non. Resp. Irre. Cont. Overall

In-context-learning detectors
Llama2-13B 0.37 0.365 0.359 0.401 0.332 0.276 0.32 0.351 0.285 0.218 0.252 0.302
Llama2-70B 0.786 0.8 0.8 0.828 0.687 0.664 0.681 0.709 0.573 0.558 0.503 0.562
Mixtral-87B 0.478 0.11 0.133 0.307 0.335 0.133 0.087 0.252 0.571 0.394 0.222 0.448
Mixtral-Large 0.854 0.831 0.807 0.837 0.809 0.869 0.833 0.833 0.814 0.82 0.824 0.835
Claude3-Haiku 0.789 0.792 0.692 0.792 0.833 0.833 0.724 0.816 0.743 0.696 0.66 0.737
Claude3-Sonnet 0.741 0.627 0.517 0.662 0.694 0.71 0.549 0.675 0.712 0.667 0.569 0.684

Vanilla supervised detectors
Llama2-13B 0.982 0.985 0.975 0.977 0.977 0.985 0.99 0.982 0.995 0.993 0.998 0.995
Llama2-70B 0.878 0.938 0.945 0.932 0.898 0.945 0.953 0.925 0.94 0.975 0.99 0.962
Mixtral-87B 0.797 0.866 0.922 0.870 0.951 0.988 0.995 0.973 0.956 0.985 0.995 0.972
Mixtral-Large 0.819 0.893 0.927 0.891 0.856 0.948 0.95 0.93 0.921 0.961 0.968 0.951
Claude3-Haiku 0.907 0.971 0.971 0.955 0.878 0.99 0.99 0.946 0.943 0.99 0.99 0.973
Claude3-Sonnet 0.764 0.941 0.941 0.895 0.533 0.956 0.973 0.834 0.838 0.968 0.983 0.923

Supervised detectors with data mixture
Claude 3 0.763 0.958 0.959 0.904 0.606 0.961 0.973 0.865 0.818 0.97 0.975 0.918
Mixtral 0.776 0.858 0.904 0.862 0.824 0.957 0.969 0.924 0.918 0.966 0.98 0.951
Llama 2 0.924 0.971 0.97 0.95 0.926 0.96 0.964 0.949 0.965 0.979 0.99 0.976
Small Combo 0.877 0.948 0.964 0.929 0.908 0.973 0.973 0.958 0.933 0.989 0.993 0.966
Large Combo 0.806 0.922 0.946 0.893 0.699 0.935 0.953 0.873 0.886 0.962 0.98 0.938

Table 9: Out-of-generator generalization: detailed results.

OpenDialKG ReDial SalesBot

IG (Mean) OG Mean Δ OG Std IG (Mean) OG Mean Δ OG Std IG (Mean) OG Mean Δ OG Std

Vanilla supervised detectors
Llama2-13B 0.977 0.651 -0.326 0.245 0.982 0.666 -0.315 0.153 0.995 0.806 -0.189 0.106
Llama2-70B 0.932 0.814 -0.118 0.14 0.925 0.856 -0.069 0.084 0.962 0.892 -0.07 0.067
Mixtral-87B 0.87 0.841 -0.029 0.107 0.973 0.796 -0.177 0.118 0.972 0.895 -0.076 0.078
Mixtral-Large 0.891 0.881 -0.011 0.037 0.93 0.915 -0.015 0.036 0.951 0.917 -0.034 0.085
Claude3-Haiku 0.955 0.797 -0.158 0.147 0.946 0.838 -0.108 0.100 0.973 0.896 -0.077 0.081
Claude3-Sonnet 0.895 0.896 0.001 0.053 0.834 0.907 0.073 0.047 0.923 0.96 0.037 0.024

Supervised detectors with data mixture
Claude3 0.904 0.847 -0.057 0.096 0.865 0.864 -0.001 0.099 0.918 0.898 -0.02 0.08
Mixtral 0.862 0.909 0.047 0.027 0.924 0.912 -0.012 0.06 0.951 0.96 0.009 0.03
Llama2 0.95 0.794 -0.156 0.136 0.949 0.82 -0.128 0.071 0.976 0.843 -0.133 0.058
Small Combo 0.929 0.826 -0.103 0.098 0.958 0.815 -0.142 0.06 0.966 0.882 -0.085 0.064
Large Combo 0.893 0.921 0.028 0.039 0.873 0.935 0.062 0.023 0.938 0.955 0.017 0.037

Table 10: Out-of-Pattern performance: detailed results.

OpenDialKG ReDial SalesBot

Enty Incn Non. Resp. Irre. Cont. Overall Enty Incn Non. Resp. Irre. Cont. Overall Enty Incn Non. Resp. Irre. Cont. Overall

Vanilla supervised detectors
Llama2-13B 0.261 0.93 0.97 0.72 0.595 0.978 0.993 0.855 0.619 0.987 0.995 0.867
Llama2-70B 0.495 0.95 0.943 0.796 0.751 0.971 0.955 0.892 0.771 0.966 0.98 0.906
Mixtral-87B 0.594 0.93 0.921 0.815 0.729 0.978 0.976 0.895 0.758 0.995 0.978 0.911
Mixtral-Large 0.709 0.893 0.858 0.82 0.85 0.942 0.923 0.905 0.911 0.955 0.962 0.942
Claude3-Haiku 0.181 0.957 0.957 0.698 0.66 0.971 0.935 0.856 0.664 0.983 0.976 0.874
Claude3-Sonnet 0.465 0.932 0.935 0.777 0.731 0.951 0.925 0.869 0.785 0.964 0.973 0.907

Supervised detectors with data mixture
Claude3 0.705 0.857 0.886 0.816 0.729 0.914 0.961 0.868 0.808 0.92 0.947 0.892
Mixtral 0.795 0.837 0.867 0.833 0.804 0.899 0.941 0.882 0.873 0.948 0.955 0.926
Llama2 0.733 0.869 0.913 0.838 0.76 0.924 0.937 0.874 0.767 0.931 0.95 0.883
Small Combo 0.775 0.875 0.925 0.858 0.755 0.917 0.931 0.868 0.8 0.95 0.967 0.906
Large Combo 0.8 0.887 0.888 0.858 0.816 0.93 0.93 0.892 0.862 0.925 0.924 0.904
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