
Cost-Effective Hallucination Detection for LLMs
Simon Valentin∗

Amazon Web Services
Berlin, Germany

simval@amazon.de

Jinmiao Fu∗
Amazon

Seattle, USA
jinmiaof@amazon.com

Gianluca Detommaso∗
Helsing

Berlin, Germany
Detommaso.gianluca@gmail.com

Shaoyuan Xu
Amazon

Seattle, USA
shaoyux@amazon.com

Giovanni Zappella
Amazon Web Services

Berlin, Germany
zappella@amazon.de

Bryan Wang
Amazon

Seattle, USA
brywan@amazon.com

ABSTRACT
Large language models (LLMs) can be prone to hallucinations —
generating unreliable outputs that are unfaithful to their inputs,
external facts or internally inconsistent. In this work, we address
several challenges for post-hoc hallucination detection in produc-
tion settings. Our pipeline for hallucination detection entails: first,
producing a confidence score representing the likelihood that a
generated answer is a hallucination; second, calibrating the score
conditional on attributes of the inputs and candidate response; fi-
nally, performing detection by thresholding the calibrated score.
We benchmark a variety of state-of-the-art scoring methods on
different datasets, encompassing question answering, fact checking,
and summarization tasks. We employ diverse LLMs to ensure a
comprehensive assessment of performance. We show that calibrat-
ing individual scoring methods is critical for ensuring risk-aware
downstream decision making. Based on findings that no individual
score performs best in all situations, we propose a multi-scoring
framework, which combines different scores and achieves top per-
formance across all datasets. We further introduce cost-effective
multi-scoring, which can match or even outperform more expen-
sive detection methods, while significantly reducing computational
overhead.

CCS CONCEPTS
• Computing methodologies→Machine learning; Artificial
intelligence.

KEYWORDS
large language model, uncertainty quantification, text classification,
hallucination

ACM Reference Format:
Simon Valentin, Jinmiao Fu, Gianluca Detommaso, Shaoyuan Xu, Giovanni
Zappella, and Bryan Wang. 2024. Cost-Effective Hallucination Detection

∗These authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD 2024 GenAI Evaluation Workshop, ,
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Generated
Output

Scoring

Scoring

...

Calibration

Input

LLM

Calibration

Multi-
Scoring

Figure 1: Schematic overview of our proposed hallucination
detection approach.

for LLMs. In Proceedings of (KDD 2024 GenAI Evaluation Workshop). ACM,
New York, NY, USA, 11 pages.

1 INTRODUCTION
Despite their impressive capabilities, large language models (LLMs)
can be prone to generating hallucinations — undesirable outputs
that are incorrect, unfaithful, or inconsistent with respect to the
inputs (or the output itself) [43]. These unreliable behaviors pose
significant risks for adopting LLMs in real-world applications. Chal-
lenges in detecting hallucinations lie, among other things, in hal-
lucinations taking different forms, being context-dependent and
sometimes being in conflict with other desirable properties of gener-
ated text [12, 42]. Hallucinations may be harmless in some contexts,
but can be undesired or potentially dangerous in other applications
(e.g., erroneous medical advice). Detecting and quantifying halluci-
nation risk is thus a critical capability to enable safe applications of
LLMs and improve generated outputs.

Prior work has proposed various approaches for detecting and
mitigating hallucinations in LLM-generated outputs, including ver-
ifying faithfulness to inputs [26], assessing internal coherence [24],
consulting external knowledge sources [32], and quantifying model
uncertainty [6, 12, 39, 42]. However, deploying these methods in
production settings is far from trivial due to several challenges:
First, there is limited comparative evaluation illuminating how dif-
ferent detection methods perform. Second, existing approaches
for detecting hallucinations differ greatly in their computational
demands, and guidelines are lacking on cost-effectiveness trade-
offs to inform method selection for real-world applications with
constraints. Third, hallucination detection in the real world often
requires careful consideration of risks and false positive/negative

KDD 2024 GenAI Evaluation Workshop, ,
Valentin et al.

trade-offs, requiring methods to provide well-calibrated probabil-
ity scores. Fourth, many applications of LLMs take the form of
calls to black-box APIs, which sometimes requires methods to em-
ploy workarounds to assess the model’s confidence in its generated
output.

In this work, we provide a framework for detecting hallucina-
tions in the outputs of any LLM in a model-agnostic manner. Our
approach relies on quantifying the probability that a generated
answer is a hallucination. After computing initial scores, we em-
ploy state-of-the-art calibration techniques to provide calibrated
probabilities of the generation containing a hallucination, which
can subsequently be used for decision making or other downstream
tasks. We evaluate a variety of scores proposed in the literature for
hallucination detection on several metrics, across multiple datasets
encompassing question answering, fact checking, and summariza-
tion tasks. We employ a range of different LLMs to ensure a com-
prehensive assessment of performance.

Critically, as we show that no single score performs best across
all datasets, we introduce multi-scoring, a simple way of combining
multiple calibrated scores, which achieves superior performance
compared to any individual score alone. Furthermore, we pro-
pose cost-effective multi-scoring, which finds the subset of best-
performing scores for any fixed cost budget, and combines them in
a multi-scoring fashion. Our empirical demonstrations reveal that
cost-effective multi-scoring not only matches but often surpasses
the performance of individual scores that incur significantly higher
costs. Consequently, our proposed method achieves superior hal-
lucination detection outcomes while maintaining a substantially
lower cost footprint.

We summarize our contributions as follows: 1. We benchmark a
variety of hallucination detection methods across the literature on
several metrics, over different datasets and LLMs. 2. We introduce
multi-scoring, a novel approach that aggregates multiple comple-
mentary scores and outperforms individual scores. 3. We further
propose cost-effective multi-scoring, which optimally balances de-
tection performance and computational constraints.

2 DETECTING LLM HALLUCINATIONS
2.1 Formalizing Hallucination Detection
We study the problem of quantifying the probability that a gener-
ated output from a language model contains hallucinations. More
formally, let 𝒙 represent an input token sequence to a language
model G, and let 𝒛 represent a generated output text sequence from
the model. We define a binary random variable 𝑦 ∈ {0, 1} that
indicates whether 𝒛 is a “permissible” output (𝑦 = 1) or contains a
“hallucination” (𝑦 = 0).

Our goal is to develop a scoring function to model the probability
that a given output text contains a hallucination conditioned on
the input.1 This is critical, as in real-world scenarios, we need to
set risk-aware thresholds, balancing false positive/negative rates to
accommodate the production requirement. Having access to scores
allows us to flexibly set the threshold. Conceptually, the key reason
to model this probabilistically is that there is inherent uncertainty

1Note that while we are interested in whether the entire output contains any hallu-
cination, one could easily adapt the methods at different granularities, such as the
sentence or phrase level.

in determining whether a given text contains a hallucination or
not. Even human raters may disagree on the assessment, based
on their own knowledge and definition. Some key contributors to
this epistemic uncertainty are: First, that no system has complete
world knowledge to perfectly assess factual correctness. Second,
that there is ambiguity in whether something is a hallucination. Fi-
nally, any automatic scoring model may make occasional errors, so
probabilistic scores reflect confidence. Therefore, while conditional
on 𝒙 and 𝒛 the true hallucination label𝑦 is fixed, our estimate of𝑦 re-
mains uncertain. The probabilistic score thus reflects this epistemic
uncertainty — the degree of belief that 𝑧 contains a hallucination
given the available knowledge: 𝑝 (𝑦 = 0 | 𝒙, 𝒛;𝝍), where 𝝍 denotes
parameters of the scoring function. We refer to this conditional
probability function as the hallucination score, denoted 𝑠𝝍 (𝒙, 𝒛).
The hallucination score can then be applied to downstream tasks,
including making risk-aware binary decisions.

We discuss concrete instances of hallucination scores in the fol-
lowing subsection. Generally, the form of 𝑠𝝍 can vary between
hallucination detection approaches. In particular, 𝑠𝝍 may depend
on multiple candidate texts generated for the same input, as im-
plemented by a number of hallucination detection methods pro-
posed in the literature. We denote 𝐾 candidate generated outputs
as 𝒁 = [𝒛1, ..., 𝒛𝐾]. Then 𝑠𝝍 (𝒙,𝒁) could quantify inconsistencies
within texts in 𝒁 using different metrics 𝝍, as discussed below.

2.2 Scoring Methods
Many hallucination detection methods proposed in the literature
make use of LLMs to “judge” the output of an LLM (either the same
or a different one). For clarity, we thus distinguish between genera-
tor and detector LLMs. The generator is defined as the model used
to generate the original response. The detector LLM is the model
used to score a generated text for the presence of hallucinations. In
general, the generator and detector LLMs may coincide. However, it
may be more desirable to use different LLMs in some scenarios, e.g.,
when computational cost is a greater concern, where a smaller LLM
may be used to judge outputs of a more expensive LLM, or when
using hallucination scoring methods that require white-/grey-box
access, while the generator is black-box.

Today, many interactions with LLMs take the form of API-calls.
Typically, only the output tokens are returned with no access to
the logits of the predicted tokens, treating the LLM effectively as
a black box. Sometimes, inference parameters may be accessible,
allowing for setting different temperature (among others) values,
thereby providing some (grey-box) access to the model. Generally,
hallucination detection methods vary in their required model ac-
cess, ranging from black-box APIs to full white-box access to the
model weights. That is, while some methods only require token-
level outputs, other methods may need access to the logits of the
generated tokens, or some control over inference parameters like
temperature.

In our experiments, we evaluate a comprehensive set of hallucina-
tion scoring methods. Generally, we do not make any assumptions
about the generator LLM being white-, grey- or black-box. We di-
vide methods into single-generation methods, which require only
one generated output, and multi-generation methods which are
based on multiple alternative generations.

Cost-Effective Hallucination Detection for LLMs
KDD 2024 GenAI Evaluation Workshop, ,

Score Logit Access NLI model # LLM calls # NLI calls # Generations
P(True) Yes No 1 0 0
P(True) Verbalized No No 1 0 1
P(InputContradict) Yes No 1 0 0
P(SelfContradict) Yes No 1 0 0
P(FactContradict) Yes No 1 0 0
Inverse Perplexity Yes No 1 0 0
NLI (DeBERTa) No Yes 0 1 0
SelfCheckGPT-NLI No Yes 𝐾 𝑀𝐾 𝐾

HallucinationRail Yes No 𝐾 0 𝐾

SimilarityDegree No Yes 𝐾 𝐾 𝐾

Table 1: Table summarizing properties of different scoring methods including model access and inference time costs. 𝐾 denotes
the number of multiple generations,𝑀 denotes the number of sentences in the response. The column of # Generations denotes
the number of LLM calls required besides the LLM call that generates the original response. In this work we set𝑀 = 1 as we
consider the responses as one sentence in our experiment.

2.3 Single-generation
We first provide an overview over a set of hallucination detection
methods that are based on scoring the hallucination from a single
given generated output.

Inverse Perplexity. This method provides a prominent instance of
using a model’s logits over output tokens to score the confidence in
the output. Computed as the inverse of the exponentiated average
negative log-likelihood of the LLM’s response [11],

Perplexity−1 (𝑊) = exp

(
1
𝑁

𝑁∑︁
𝑖=1

log𝑝 (𝑤𝑖 |𝑤𝑖−1, ...,𝑤1)
)
, (1)

inverse perplexity thus provides a sequence-length normalized
expression of the model’s confidence. Here, the model may either
be the generator LLM or a different detector LLM. Using a different
LLM from the generator as a plug-in estimator implies that the
confidence estimate is detached from the generator. If our generator
provides access to the model’s logits we can directly use them to
score hallucinations. Alternatively, we can use another LLM to
generate the logits of output tokens.

P(True). This method works by prompting an LLM whether an
answer is correct or not, then making use of the logits of the next
token [16]. Given a prompt like the following:
Provide a "True" or "False" response on whether the
answer for the following question is correct. Give ONLY
a True or False answer, no other words or explanation.

The question is: {x}
The answer is: {z}
The answer is:

We compute P(True) by first taking the softmax over the first gen-
erated output token’s logits, and then normalizing across the “True”
and “False” tokens.2 That is, let z(1) = (𝑧 (1)1 , . . . , 𝑧

(1)
|𝑉 |) be the logit

vector over the vocabulary 𝑉 for the first generated token when
2Note that alternatively, we can prompt the LLM to bind the True/False tokens to
symbols like response options A or B [16]. However, this did not change results in
our experiments. Further, if the detector LLM provides only black-box access, one can

asking the LLM to evaluate whether the answer is correct. We then

take the softmax over these logits, 𝑝 (𝑤 | z(1)) = exp(𝑧 (1)𝑤)∑
𝑤′ ∈𝑉 exp(𝑧 (1)

𝑤′)
.

Let𝑤True,𝑤False ∈ 𝑉 be the “True” and “False” token ids. Then we
can compute P(True) as:

𝑃 (True | z(1)) = 𝑝 (𝑤True | z(1))
𝑝 (𝑤True | z(1)) + 𝑝 (𝑤False | z(1))

. (2)

In addition to checking whether the response is correct, we pro-
vide variations of P(True), where we check whether the output
contradicts the input in P(InputContradict), the output contradicts
itself in P(SelfContradict), or the output contradicts generally estab-
lished facts in P(FactContradict), with the followings prompts:

P(InputContradict): Provide a “True“ or ”False“ response
on whether the following texts are free of any direct
logical or factual contradictions between them. Give
ONLY a True or False answer, no other words or explanation.

First text: {x}
Second text: {z}
The answer is:

P(SelfContradict): Provide a “True“ or ”False“ response
on whether the following text is free of internal
factual or logical contradictions. Give ONLY a True or
False answer, no other words or explanation.

The text is: {z}
The text is internally consistent:

P(FactContradict): Provide a “True“ or ”False“ response
on whether the following text contains no contradictions
with generally established facts. Give ONLY a True or
False answer, no other words or explanation.

Text: {z}
The text is factually sound:

sample the corresponding tokens and use the empirical distribution to approximate,
but thereby incurring a higher computational cost.

KDD 2024 GenAI Evaluation Workshop, ,
Valentin et al.

NLI Text Classification. Natural language inference (NLI) models
provide an alternative to assess the correctness of the model output.
As hallucination detection requires checking for contradictions,
we compute the score as 1 − 𝑆contradict, where 𝑆contradict refers to
the softmax probability of the output conflicting with the ques-
tion. Specifically, we use a DeBERTa model fine-tuned on an MNLI
task [10] as the underlying NLI model, which we refer to as NLI
(DeBERTa).

Verbalized Probabilities. Instead of analyzing a model’s logits,
scores are elicited by asking an LLM to provide a confidence ver-
batim, i.e., by generating tokens that indicate the numerical confi-
dence [21, 35] with the following prompt:
Provide the probability between 0.0 and 1.0 that the
answer for the following question is correct. Give
ONLY the probability value between 0.0 and 1.0, no
other words or explanation.

The question is: {x}
The answer is: {z}
Probability the answer is correct:

We note that moderated LLMs accessed through APIs may in prac-
tice decline to answer if the context does not provide sufficient
information, rather than assigning a low confidence score.

2.4 Multi-generation
Multi-generation methods are based on quantifying the consistency
across multiple generated outputs from the generator LLM. This
follows the notion of white-/grey-box uncertainty quantification
via logits that if the LLM is confident in its response, multiple
generated responses will probably be alike and contain compatible
facts. Conversely, for fabricated information, sampled responses
are more likely to differ and contradict one another. Crucially, this
rests on the assumption that the model’s confidence is calibrated,
as we discuss and evaluate below.

SelfCheckGPT. This method exploits a DeBERTa NLI model to
assess whether the answer 𝐴0 is consistent with 𝐾 alternative gen-
erated answers 𝐴1, ..., 𝐴𝐾 [25]. Each sentence of 𝐴0 is compared
against the full set of answers 𝐴1, ..., 𝐴𝐾 . A consistency score per
sentence is obtained via an NLI model, then the final score is ob-
tained by averaging over the sentence-wise scores.

Similarity Degree. This method is based on computing pairwise
similarities between the multiple responses using NLI models, and
then quantifying uncertainty based on the distribution of simi-
larities [22]. Here, we compute the pairwise similarities between
responses via the contradict class probability of an NLI model and
construct a degree matrix, where each diagonal element corre-
sponds to the total (sum) similarity of the corresponding response
to all other responses. We use the degree of the candidate response
𝐴0 as the confidence estimate, following favourable results in prior
work [22], but note that other metrics have also been proposed in
the original paper.

NeMO Guardrails: Hallucination Rail. Unlike SelfCheckGPT or
Similarity Degree, the score here is computed via one LLM call,

where we check for agreement between the concatenated 𝐾 addi-
tional generations and the candidate output and not averaged over
sentences or computed on pairs of responses. Specifically, we use
the softmax probability normalized over yes/no tokens using the
following prompt:
You are given a task to identify if the hypothesis is
in agreement with the context below. You will only
use the contents of the context and not rely on
external knowledge. Answer with yes/no.

context: {K additional_sampled_responses}
hypothesis: {candidate_response}
agreement:

2.5 Calibration
Initial hallucination scores may not be properly calibrated, which
can lead to poor downstream decisions. Seminal work by Guo et
al. [9] has demonstrated that neural models tend to bemiscalibrated,
particularly in the form of models being overconfident. Later work,
focusing on language models, has confirmed this across a wide
range of tasks, models and datasets [22]. Notably, there is also
research which demonstrates that given particular prompts and
in-distribution tasks, LLMs can be well-calibrated [16]. However,
this has been shown to be brittle and dependent on context [18].

Formally, our score outputs probabilities 𝑝𝝍 (𝑦 = 0|𝒙, 𝒛) that
𝒛 contains a hallucination, parameterized by 𝝍. The score is cali-
brated if, for any probability level 𝑝 ∈ [0, 1], the average observed
frequency of hallucinations matches the predicted probability:

E[𝑦 | 𝑝𝝍 (𝑦 = 0|𝒙, 𝒛) = 𝑝] = 𝑝 (3)

A naive approach for obtaining scores would be to compute the
model’s probabilities marginally, ignoring the context/question 𝒙
and generated response 𝒛 and directly estimating 𝑝 (𝑦 = 1). How-
ever, this does not allow for conditioning on individual inputs to
obtain calibrated probabilities 𝑝 (𝑦 = 1 | 𝒙, 𝒛) for specific 𝒙 , and 𝒛,
which is, however, impossible to guarantee [30]. Common calibra-
tion methods include temperature scaling (Platt scaling) of logit
outputs [9, 29], isotonic regression [41] or histogram binning [40],
which operate marginally, and can thereby not account for different
confidence levels for different inputs (e.g., with an LLM being more
confident on certain domains than others).

An alternative is to partition the inputs into 𝐺 groups and com-
pute calibration separately for each group 𝑔 ∈ 𝐺 . However, this as-
sumes the groups are disjoint and does not handle inputs belonging
to multiple groups, which is often necessary [30]. More advanced
calibration methods, such as multicalibration, which we use in this
work, allow defining 𝐺 potentially overlapping groups [30]. Prior
work has shown the effectiveness of modern calibration techniques
in scoring LLM confidence, albeit in a white-box setting [6]. We
describe our calibration approach in the experimental section.

2.6 Multi-Scoring: Combining Scores
Different scoring methods capture different aspects of hallucina-
tions, e.g., incorrect, non-factual, non-grounded, irrelevant, incon-
sistent with other answers, etc. As a result, some scores may work
better on some data or for some specific models, and worse on

Cost-Effective Hallucination Detection for LLMs
KDD 2024 GenAI Evaluation Workshop, ,

others. Therefore, we design amulti-scoring method to combine the
complementary information from individual scores into a single,
strong predictor.

Denote each available score by 𝑠𝑛 , for 𝑛 = 1, . . . , 𝑁 . In order
to obtain an aggregated score, we run a logistic regression us-
ing as features the concatenations of the logit of each score, i.e.
[logit(𝑠𝑛 (𝒙, 𝒛)), . . . , logit(𝑠𝑁 (𝒙, 𝒛))], and the labels of the calibra-
tion dataset as target variables. 3

2.7 Cost-Effective Multi-Scoring
Scoring methods based on multiple generations incur the cost of ad-
ditional generations as well as the cost of checking their consistency.
Similarly, multi-scoring can be a viable choice when there are only
few LLM generations to check for hallucinations, but incurs consid-
erable computational cost, especially when using multi-generation
methods. To avoid prohibitive computational costs in practice, we
propose cost-effective multi-scoring, where we set a fixed compu-
tational budget and compute the best performing combination of
scores that stay within the specified budget.

Given an input text 𝒙 and generated text 𝒛, we have 𝑁 scoring
functions 𝑠1 (𝒙, 𝒛), ..., 𝑠𝑁 (𝒙, 𝒛) with associated costs 𝑐1, ..., 𝑐𝑁 (e.g.,
number of generations required). We are given a total computa-
tional budget 𝐵. Our goal is to find the optimal subset of scores
𝑆∗ ⊆ {1, ..., 𝑁 } that maximizes detection performance while staying
within budget 𝐵:

𝑆∗ = argmin
𝑆 :𝑆⊆{1,...,𝑁 }

L(𝑓 (𝑠𝑖 (𝒙, 𝒛))𝑖∈𝑆) s.t.
∑︁
𝑖∈𝑆

𝑐𝑖 ≤ 𝐵 (4)

where L measures loss on a validation set. This is a constrained
optimization problem over subsets of scoring functions. When
𝐵 = min𝑖 𝑐𝑖 , it reduces to selecting the single best score at the
lowest cost. When 𝐵 =

∑
𝑖 𝑐𝑖 , it recovers full multi-scoring. In be-

tween, the optimal subset 𝑆∗ provides the best trade-off between
performance and cost. We note that in general, this problem is com-
putationally challenging, given the exponential runtime complexity.
However, given that there are only generally a small set of poten-
tial scores (𝑁 ∼ 10) and the logistic regression is very fast to fit,
computing all combinations takes only 1.8 seconds on a single Intel
Xeon processor (3.1 GHz), iterating over all candidate solutions
sequentially. When this approach is not feasible, some exemplary
alternatives include classic greedy forward-selection methods or
regularising the model via an L1 penalty while scaling the regu-
larisation term to accommodate score cost. Overall, cost-effective
multi-scoring allows for flexibly balancing multiple scores under
computational constraints.

Quantifying Cost. While the cost 𝑐𝑖 of scoring function 𝑠𝑖 is pre-
sented abstractly above, accurately quantifying computational cost
can be challenging in practice. The actual runtime per method is
a reasonable proxy, however the runtime depends on model ar-
chitecture, hardware acceleration, batching, etc. One approach is
to directly benchmark each scoring function’s average runtime
empirically on the target hardware. However, this overlooks nu-
ances like caching effects and ignores runtime variability due to
3Note that we also conducted experiments with alternativemodels, such as XGBoost [4]
and Random Forest [2], but results did not show significant improvements, so we opted
for logistic regression for simplicity.

implementational differences. To simplify our analysis, and as LLM
calls are generally much more expensive than calling smaller NLI
models based on parameter size, we leverage the number of LLM
calls required per method as a proxy. See Table 1 for an overview. If
more precision is desired, we suggest empirically running different
scores and computing their computational cost in the actual appli-
cation, as the cost will depend on the precise setup and a range of
factors.

3 EXPERIMENTS
3.1 Experimental Setup
3.1.1 Datasets.

TriviaQA. TriviaQA [15] is a commonly used factual open-respon-
se QA dataset. Originally set up as a reading comprehension task,
it is today often used without context as a closed-book (free-recall)
task [37]. We use the validation fold, containing 17944 question-
answer pairs. We use mistralai/Mistral-7B-Instructv0.2 [13]
to generate candidate answers. To decide whether a given response
should be labelled as positive or negative, we check whether the
correct answer is contained in the generated answer after removing
formatting, following the original evaluation script [15].

FEVER. The closed-response Fact Extraction and VERification
dataset [34] provides a comprehensive benchmark of factual hal-
lucination detection. We take the test fold, containing 14027 la-
belled examples of source documents, claims and whether they are
supported, refuted or contain not enough info. For the pur-
pose of hallucination detection, we look at all claims that are either
supported or refuted.

HaluEval. We include the hallucination detection dataset HaluE-
val [19] and use the summarization task, which contains 10000
labeled examples of source documents, summaries and labels for
whether the summary contains hallucinations.

BIG-bench. It provides an evaluation of LLMs on a diverse set of
tasks [33]. We select 11 tasks suitable for hallucination detection,
leading a total of 8664 labelled examples from the validation fold.

3.1.2 Metrics. Practical applications of hallucination detection re-
quire calibrated scores, but often also binary decisions over whether
a given output is hallucinated or not. To this end we report the
Brier score [3], binary decision metrics F1 score and accuracy.

3.1.3 LLMs. We conduct experimentswith Mistral-7B-Instruct-
v0.2 [13], Mixtral-8x7B-Instruct-v0.1 [14], falcon-7b-instr-
uct [1] and OpenLLaMA-13b [5, 8, 36]. All models are used with
default configurations via HuggingFace Transformers [38].

3.1.4 Calibration. The calibration step is performed via the fol-
lowing multicalibration approach, using the Fortuna library [7]:
To obtain groups, we compute embeddings of the input text 𝒙
and the generated response 𝒛, such that our embedding is 𝒆 B
[embed(𝒙), embed(𝒛)]. We obtain embeddings from Universal An-
glE Embedding [20], which is the SOTA in theMTEB benchmark [28]
at the time of writing. We subsequently reduce the dimension of 𝒆
via UMAP [27] and perform soft-clustering via Gaussian Mixture
Models, as a simple off-the-shelf algorithm (fitting the number of

KDD 2024 GenAI Evaluation Workshop, ,
Valentin et al.

cluster components via BIC [31]). The calibration error is measured
for each group 𝑔 ∈ 𝐺 separately. Calibration then involves itera-
tively patching the group with the largest error until the calibration
error drops below a threshold for all groups.4 This provably con-
verges to a calibrated model with theoretical guarantees [30]. We
fit the calibrator to a random calibration fold of 80% of the data and
report only held-out test results. For all binary predictions, we set
the threshold to the 50th percentile to not impose preferences over
false true/negative rates, but note that in practice any threshold
could be applied.

3.2 Individual Scoring Methods
Table 2 presents the results of different hallucination detection
methods on all datasets. Multi-generation methods (SelfCheckGPT-
NLI, HallucinationRail and SimilarityDegree) are employed only
for TriviaQA, since the latter provides the true answer to each ques-
tion, which can be compared to the alternative generated answers
to assess their agreement. In contrast, for HaluEval, BIG-Bench
and FEVER, the true answer is not provided. Instead, we compare
the given candidate answer from the dataset against the provided
binary label of correctness. If we exclude Multi-Scoring methods,
multi-generation methods such as SelfCheckGPT-NLI and Simi-
larityDegree (with 10 generations) achieve the best performance
on TriviaQA, P(True) is the best on HaluEval and BIG-Bench, and
P(InputContradict) performs best on FEVER. Thus, we find that
there is no single best scoring method across all datasets. This is
likely because different scoring methods capture different aspects
of hallucination, supporting the notion that hallucination is a multi-
faceted concept. Multi-generation methods measure hallucination
based on the consistency of the generator LLM’s responses and on
the ability of the comparison method to identify whether multiple
alternative responses are in agreement. We find that SelfCheckGPT-
NLI performs best in our experiments in comparison to Similari-
tyScore and HallucinationRail. While all of these methods follow
similar approaches, there are subtle differences in how they assess
the consistency between different responses. More generally, as we
discuss below, multi-generation methods are appropriate only if
one can assume that there is exactly one correct response, but can
fail otherwise.

Other methods are based on different notions of hallucination,
such as NLI (DeBERTa) measuring the entailment of the response
given the input. Interestingly, variants of P(True) can be appropriate
for detecting different kinds of hallucinations. P(True) explicitly
asks the evaluator LLM to check whether the response is correct. In
some contexts, the evaluator LLM may have the ability to directly
evaluate this. However, in other situations, as we see with the
FEVER dataset, other methods such as P(InputContradict) can be
more appropriate, if we are trying to directly target a specific form
of hallucination, which may not be subsumed under a general
“correct or not?” prompt. Other applied scenarios may target even
more different (or more specific) kinds of hallucinations, though
the variants we include in this work are designed to cover the space
in a reasonable manner. Similarly, while the datasets included in
these experiments were selected to cover a wide range of different
kinds of hallucinations, real-world applications may show even new

4Note that alternative approaches are possible [30].

kinds of hallucinations, for which no public datasets are available.
Overall, these findings highlight the need for our multi-scoring
method which can absorb the strength of each individual method
and can be easily applied to a concrete hallucination detection
setting while only requiring a relatively small amount of labeled
data.

Overall, neither the inverse perplexity score nor the NLI (De-
BERTa) scores emerge as the best scores for any of the datasets we
consider. While they may add information that can be exploited in
(cost-effective) multi-scoring, as reported below, individually they
perform worse than some of the other scores.

3.3 Multi-Scoring
To evaluate the proposed multi-scoring method, we conduct exper-
iments on all datasets combining the scores via logistic regression.
As presented in Table 2, the multi-scoring ensemble achieves an F1
score of 0.9106 on TriviaQA, outperforming the best individual F1
score of 0.8614 (achieved by SelfCheckGPT-NLI). Similarly, Brier
and Accuracy also show the highest performance for multi-scoring.
For HaluEval, we also find that multi-scoring outperforms the best
individual score (P(True)) in all metrics. BIG-Bench shows more
nuance, as multi-scoring outperforms the best individual score
(P(True)) on Brier and Accuracy, but not on F1. This reflects the
fact that the metrics capture different properties, and practical con-
siderations may require a decision as to which metric should be
prioritized in a given application. For FEVER, multi-score again
outperforms the best individual score (P(InputContradict)) in all
metrics.

Thus we see that combining scores performs better than the
top performing individual scores, showing that combinations of
different scoring signals complement each other and can boost
performance. This demonstrates that combining complementary
signals enables more robust hallucination detection, while balanc-
ing the strength of each scoring method. Crucially, while some
settings may benefit from combinations of different signals (such
as when trying to detect different kinds of hallucinations in a given
generated output), in other settings the data-driven selection of an
informative signal may be sufficient (such as when trying to detect
a more narrowly defined notion of hallucination). These scenarios
are covered by our use of multi-scoring, which allows for arriving
at optimally combined hallucination scores (or binary decisions)
for a given application. Meanwhile, as computational cost can be a
concern with scaling LLM applications, it may not be desirable to
always use a full ensemble of scores, and we would rather compute
the most performant score at a fixed computational cost.

3.4 Cost-effective Multi-Scoring
Shown in Table 2, cost-effective multi-scoring methods are also
amongst the top performers, but at considerably lower cost com-
pared to multi-score. We see that at cost 𝐶 = 1, measured as the
number of LLM calls (but see our discussion about measuring cost
above), we recover the best individual scores, which varies across
each dataset. As we increase the budget, the cost-effective multi-
scores converge to the performance of the multi-score itself. Notice
that in several instances, cost-effective multi-score with 𝐶 = 2
already performs as good as multi-score itself. For TriviaQA, we

Cost-Effective Hallucination Detection for LLMs
KDD 2024 GenAI Evaluation Workshop, ,

Table 2: Hallucination detection results on all datasets of calibrated scoring methods. Methods that are not applied to a given
dataset are marked as —. All scores were computed with Mistral-7B-Instruct-v0.2. TriviaQA responses were generated with
Mistral-7B-Instruct-v0.2. Excluding multi-scoring, the best performing scores are underlined. Including multi-scoring, the
best performing scores are displayed in boldface.

TriviaQA HaluEval BIG-Bench FEVER

Scoring Method Brier ↓ F1 ↑ Acc ↑ Brier ↓ F1 ↑ Acc ↑ Brier ↓ F1 ↑ Acc ↑ Brier ↓ F1 ↑ Acc ↑

P(True) 0.1819 0.8263 0.7490 0.1980 0.7595 0.6935 0.2066 0.6470 0.6417 0.0729 0.9181 0.9180
P(True) Verbalized 0.1789 0.8143 0.7350 0.2293 0.7040 0.6035 0.2149 0.5252 0.6255 0.0683 0.9197 0.9187
P(InputContradict) 0.1799 0.8150 0.7398 0.2012 0.7552 0.6735 0.2375 0.0000 0.6042 0.0634 0.9328 0.9309
P(SelfContradict) 0.2125 0.8157 0.6888 0.2449 0.6639 0.5620 0.2423 0.1929 0.5413 0.1564 0.8216 0.8001
P(FactContradict) 0.2107 0.8157 0.6888 0.2393 0.6409 0.6000 0.2355 0.2733 0.5949 0.1430 0.8207 0.8190

Inverse Perplexity 0.2033 0.8157 0.6888 0.2490 0.5151 0.5060 0.2289 0.2491 0.6244 0.2353 0.5653 0.5916

NLI (DeBERTa) 0.1924 0.8539 0.7451 0.2417 0.6602 0.5640 0.2322 0.3262 0.6186 0.1673 0.7512 0.7530

SelfCheckGPT-NLI (10) 0.1434 0.8614 0.8011 — — — — — — — — —
HallucinationRail (10) 0.1640 0.8539 0.7721 — — — — — — — — —
SimilarityDegree (10) 0.1443 0.8585 0.7927 — — — — — — — — —

Multi-Score 0.1105 0.9106 0.8593 0.1911 0.7668 0.7075 0.2045 0.5966 0.6590 0.0544 0.9371 0.9351

Cost-Effective (C = 1) 0.1819 0.8263 0.7490 0.1980 0.7595 0.6935 0.2066 0.6470 0.6417 0.0634 0.9328 0.9309
Cost-Effective (C = 2) 0.1772 0.8308 0.7520 0.1911 0.7668 0.7075 0.2045 0.5966 0.6590 0.0636 0.0005 0.9328
Cost-Effective (C = 3) 0.1727 0.8324 0.7537 0.1911 0.7668 0.7075 0.2045 0.5966 0.6590 0.0544 0.9371 0.9351
Cost-Effective (C = 4) 0.1718 0.8277 0.7481 0.1911 0.7668 0.7075 0.2045 0.5966 0.6590 0.0544 0.9371 0.9351
Cost-Effective (C = 5) 0.1485 0.8619 0.8011 0.1911 0.7668 0.7075 0.2045 0.5966 0.6590 0.0544 0.9371 0.9351

see that performance increases on all metrics as we increase the
computational budget, with cost-effective multi-score at 𝐶 = 5 out-
performing SelfCheckGPT-NLI as the most performant individual
scores at half the computational cost in all metrics but Brier. HaluE-
val shows no improvement beyond a budget of 𝐶 = 2, which is
likely due to the kind of hallucination to detect beingmore narrowly
defined and well-capture by a small number of signals, thereby not
benefiting from additional scores. For BIG-Bench, as discussed for
multi-score, we recover the best individual score at 𝐶 = 1, and
match multi-score at higher budgets. FEVER results indicate that,
again, we recover the best individual score at budget 𝐶 = 1, and
can already recover the full multi-score at a budget of 𝐶 = 3.

We now take a closer look at cost-effect multi-scoring when
including multi-generation scoring methods. The overall cost bud-
get is varied over the entire range. For each budget, we solve the
constrained optimization in Eq. 4 to find the optimal subset 𝑆∗ of
scores. We compare the hallucination detection F1 score achieved
by the cost-effective ensemble versus individual scoring functions
and the full ensemble with all scores. Figure 2 shows the results for
TriviaQA for responses generated via Mixtral-8x7B-v0.1. With a
minimal budget of 𝐵 = 1, cost-effective selection recovers the best
single method, as expected. As the budget increases, it selectively
adds more expensive functions, gradually improving F1, though the
gains are marginal at higher budgets per unit cost. At the maximum
budget, it recovers the unconstrained full ensemble performance.
In between, cost-effective multi-scoring incorporates both less and
more and expensive methods to maximize detection within the
computational constraints.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Computational Cost (#LMM Calls)

0.88

0.88

0.89

0.89

0.90

0.90

0.91

F1
 S

co
re

Cost-Effective Multi-Score
P(True)
SelfCheckGPT-5
SelfCheckGPT-10

Figure 2: Hallucination detection F1 versus computational
budget 𝐵 for cost-effective multi-scoring.

These results demonstrate that the proposed cost-effective multi-
scoring approach can intelligently balance the trade-off between
computational expense and hallucination detection effectiveness. It
outperforms individual scoring functions and makes selective use
of more costly scores to maximize detection performance under a
fixed computational budget.

KDD 2024 GenAI Evaluation Workshop, ,
Valentin et al.

A key consideration in practice would be whether to include po-
tentiallymore costlymulti-generationmethods, such as SelfCheckG-
PT-NLI. In particular as implied by the results presented in Table 2,
we may be interested in reducing the number of required multiple
generations while matching performance at lower computational
costs. To this end, we compare SelfCheckGPT (as the single best per-
forming method for TriviaQA) alone with SelfCheckGPT combined
with P(True) at different numbers of additional responses generated
via Mixtral-8x7B-v0.1. Here, we count the evaluation of P(True)
as one additional LLM call, just as generating one additional output
from the generator LLM. As presented in Figure 3, at one additional
generation, SelfCheckGPT (in the degenerate case of only one gen-
erated output) combined with P(True) thus recovers P(True). As
the number of additional generations increases, the combination
quickly outperforms SelfCheck alone. In particular, we observe that
cost-effective multi-scoring with 3 LLM calls is already as good as
SelfCheckGPT with 9 LLM calls in our experiment. This highlights
how we can save costs by combining multi-generation methods
with other scores while requiring fewer additional generated re-
sponses from the generator LLM than if we wanted to achieve the
same performance with multi-generation methods alone.

0 1 2 3 4 5 6 7 8 9 10
Number of Additional LMM Calls

0.86

0.87

0.88

0.89

0.90

F1
 S

co
re

SelfCheckGPT
SelfCheckGPT & P(True)
P(True)

Figure 3: Relationship between number of generations used
for SelfCheckGPT and performance of cost-effective multi-
score vs SelfCheckGPT alone on TriviaQA.

3.5 Exploration of Relationships between Scores
As discussed above, different scoring methods can target different
kinds of hallucations. To explore this empirically, we here explore
their relationships via Spearman rank correlations. As presented in
Figure 4, calibrated scores across all different individual scores are
positively correlated. Meanwhile, the magnitude of their correla-
tions is smaller than would perhaps be expected if one were to con-
sider hallucinations as a uniform phenomenon. At the same time, we
can see certain “clusters” of more strongly inter-correlated scores
emerge. For example, multi-generation methods including Self-
CheckGPT, HallucinationRail and SimilarityDegree, which check
the consistency across multiple generations, show comparably high

P(
Tr

ue
)

P(
Tr

ue
) V

er
ba

liz
ed

P(
In

pu
tC

on
tra

di
ct

)

P(
Se

lfC
on

tra
di

ct
)

P(
Fa

ct
Co

nt
ra

di
ct

)

In
ve

rs
e

Pe
rp

le
xi

ty

De
be

rta

Se
lfC

he
ck

GP
T

Ha
llu

cin
at

io
nR

ai
l

Si
m

ila
rit

yD
eg

re
e

P(True)

P(True) Verbalized

P(InputContradict)

P(SelfContradict)

P(FactContradict)

Inverse Perplexity

Deberta

SelfCheckGPT

HallucinationRail

SimilarityDegree

1 0.6 0.57 -0.015 0.064 0.2 0.14 0.42 0.33 0.42

0.6 1 0.65 0.15 0.22 0.31 0.096 0.48 0.37 0.45

0.57 0.65 1 0.29 0.31 0.35 0.24 0.44 0.42 0.41

-0.015 0.15 0.29 1 0.53 0.28 0.11 0.1 0.13 0.038

0.064 0.22 0.31 0.53 1 0.26 0.29 0.17 0.24 0.12

0.2 0.31 0.35 0.28 0.26 1 0.15 0.3 0.23 0.29

0.14 0.096 0.24 0.11 0.29 0.15 1 0.093 0.2 0.098

0.42 0.48 0.44 0.1 0.17 0.3 0.093 1 0.58 0.79

0.33 0.37 0.42 0.13 0.24 0.23 0.2 0.58 1 0.56

0.42 0.45 0.41 0.038 0.12 0.29 0.098 0.79 0.56 1
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4: Heatmap of Spearman rank correlations between
scores on TriviaQA.

correlations. P(True) and P(True) Verbalised and P(InputContradict)
emerge as a similarly correlated cluster of stronger correlations.
Overall, this supports the idea that different scores can capture
distinct information, and the need to empirically select appropriate
(combinations of) scores for a given application, as we propose with
cost-effective multi-scoring.

3.6 Experiments across Different LLMs
Most of the scoring methods considered in this work rely on detec-
tor LLMs to compute scores for hallucination detection. In Table 4 of
Appendix A, thus present additional data for different LLMs, namely
Mixtral-8x7B-Instruct-v0.1, falcon-7b-instruct and OpenL-
LaMA-13b. Overall, we see that hallucination detection performance
is correlated with performance on general LLM benchmarks5. Thus,
more overall capable LLMs are likely to perform better at halluci-
nation detection than less capable ones. However, concrete appli-
cations may need to take the inference cost of LLMs into account,
where one may not always be able to use the most expensive model.
We note that cost-effective multi-scoring could here also make use
of scores computed via LLMs with different computational costs to
find cost-effective combinations.

3.7 The Importance of Calibration
To analyze the impact of calibration, we conduct an ablation study
by evaluating model performance with and without calibrating the
individual scores. Table 3 in Appendix A indicates that model per-
formance clearly drops in most of the datasets and metrics without

5E.g., https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Cost-Effective Hallucination Detection for LLMs
KDD 2024 GenAI Evaluation Workshop, ,

calibration. This demonstrates the benefit of calibration for more
accurate and risk-aware downstream applications.

3.8 Exploring Multi-Generation Assumptions

User: Generate a recipe for Lunch.

LLM Response 1: Here is a recipe for a tomato
and basil soup. First, bring 1L of vegetable broth to a boil....

LLM Response 2: Here is a recipe for a quinoa
and avocado salad. First, cook 150g of quinoa according to
the package instructions and let it cool...

Figure 5: Example of multi-generation failure-case in NLP
systems, illustrating conflicting responses.

Our results indicate that methods based on the uncertainty
among multiple generations can provide strong signals when such
multiple generations are available. However, such methods can
also suffer from problems in practice. Methods based on multiple
generations make use of the uncertainty of the generator, that is the
distribution over generations 𝒛 given the input 𝒙 , for model G, i.e.,
𝑝G (𝒛 | 𝒙) and the consistency between actual sampled generations
𝒛. We are interested in classifying whether the candidate output
contains a hallucination or not, that is estimating and making use
of 𝑝 (𝑦 | 𝒙, 𝒛). The generating model’s uncertainty 𝑝G (𝒛 | 𝒙) can be
a useful proxy for 𝑝 (𝑦 | 𝒙, 𝒛), but only under particular conditions.

On a technical level, sampling multiple answers requires access
to the generator’s temperature parameter, as temperatures of zero
collapse the generations to a single response, as is mentioned, e.g.,
in [25]. Therefore, these methods are technically grey-box models,
as they require some access to the model’s inference parameters.

More conceptually, the generator’s uncertainty (or confidence [22])
over 𝑝G (𝒛 | 𝒙) reflects uncertainty over generated tokens. All re-
cently proposed multi-scoring methods we are aware of are based
on the idea of scoring the consistency across multiple generations
using model-based metrics. However, self-consistency across multi-
ple generations is neither a necessary nor sufficient criterion for a
hallucination to be present. Sufficiency is not given as a model may
consistently provide an incorrect response. Self-consistency across
multiple generations is also not necessary, as many tasks allow for
multiple hallucination-free answers that are contradictory to each
other.

As a relatively harmless example, in tasking a model to generate
cooking recipes for lunch, the model may generate, among other
things, a recipe for a salad and a recipe for a soup. Clearly, the steps
in preparing these dishes contain contradictory information, while
otherwise being free of hallucinations in themselves. Thus, if there
is more than one correct response, the self-consistency assessment
in multi-generation methods may falsely score an output as likely
to be hallucinated. As there are numerous situations where there
exist multiple correct responses, assuming that there is only one
could lead to worse LLM responses, also via a loss of diversity.

Practically, methods based on multiple generations can be costly
due to added computational overhead, as we have seen above. Fi-
nally, these methods are based on the assumption that LLMs are
calibrated. As such, multi-generation methods do not allow for
detecting cases where the generator LLM is confident yet wrong.

4 CONCLUSION
In this work, we compared a comprehensive set of scoring meth-
ods to provide calibrated probability scores for the presence of
hallucinations in generated LLM outputs. Overall, we have ob-
served that no single hallucination detection score performs best
across all datasets. Our experiments showed that combinations of
scores, as suggested with multi-scoring, can effectively combine
complementary signals to yield higher hallucination detection per-
formance than any individual score. Further, we demonstrate that
cost-effective multi-scoring can find the highest performing scores
at a given computational budget.

More generally, our findings support the notion that halluci-
nations can be rather multi-faceted than present a uniform phe-
nomenon. Thus, detecting hallucinations may require different
methods. In concrete settings, one may be interested in even more
fine-grained detection of particular types of hallucinations, such as
in specific domains like code generation [23].

The approach outlined in this work requires only a small amount
of labeled data to calibrate hallucination scores and combine scores
via (cost-effective) multi-scoring. However, it is important to ac-
knowledge the limitations of the current work. Future research
could explore the effectiveness of this approach on more diverse
datasets, investigate alternative scoring methods, or extend the
methodology to multi-modal models. While improvements in LLM
performance can be expected to also lower their rate of occurrence,
hallucinations are unlikely to go away completely [17]. Thus, even
as models improve further, detecting hallucinations is likely to
remain relevant for applying LLMs in a reliable and trustworthy
manner in future.

In summary, our work presents a promising approach for detect-
ing hallucinations in LLM outputs by combining multiple scoring
methods in a cost-effective way, offering a pathway towards more
reliable and trustworthy language models that can be applied in
real-world settings with more confidence.

REFERENCES
[1] Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli,

Ruxandra Cojocaru, Merouane Debbah, Etienne Goffinet, Daniel Heslow, Julien
Launay, Quentin Malartic, Badreddine Noune, Baptiste Pannier, and Guilherme
Penedo. 2023. Falcon-40B: an open large language model with state-of-the-art
performance. (2023).

[2] Leo Breiman. 2001. Random forests. Machine learning 45 (2001), 5–32.
[3] Glenn W Brier. 1950. Verification of forecasts expressed in terms of probability.

Monthly weather review 78, 1 (1950), 1–3.
[4] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[5] Together Computer. 2023. RedPajama-Data: An Open Source Recipe to Reproduce
LLaMA training dataset. https://github.com/togethercomputer/RedPajama-Data

[6] Gianluca Detommaso, Martin Bertran, Riccardo Fogliato, and Aaron Roth. 2024.
Multicalibration for Confidence Scoring in LLMs. arXiv preprint arXiv:2404.04689
(2024).

[7] Gianluca Detommaso, Alberto Gasparin, Michele Donini, Matthias Seeger, An-
drew Gordon Wilson, and Cedric Archambeau. 2023. Fortuna: A Library for
Uncertainty Quantification in Deep Learning. arXiv preprint arXiv:2302.04019
(2023).

https://github.com/togethercomputer/RedPajama-Data

KDD 2024 GenAI Evaluation Workshop, ,
Valentin et al.

[8] Xinyang Geng and Hao Liu. 2023. OpenLLaMA: An Open Reproduction of LLaMA.
https://github.com/openlm-research/open_llama

[9] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian QWeinberger. 2017. On calibration of
modern neural networks. In International conference on machine learning. PMLR,
1321–1330.

[10] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. De-
berta: Decoding-enhanced bert with disentangled attention. arXiv preprint
arXiv:2006.03654 (2020).

[11] Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. 1977. Perplexity—a
measure of the difficulty of speech recognition tasks. The Journal of the Acoustical
Society of America 62, S1 (1977), S63–S63.

[12] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of hallucination in
natural language generation. Comput. Surveys 55, 12 (2023), 1–38.

[13] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, et al. 2023. Mistral 7B. arXiv preprint
arXiv:2310.06825 (2023).

[14] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche
Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou
Hanna, Florian Bressand, et al. 2024. Mixtral of Experts. arXiv preprint
arXiv:2401.04088 (2024).

[15] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. 2017. Triviaqa:
A large scale distantly supervised challenge dataset for reading comprehension.
arXiv preprint arXiv:1705.03551 (2017).

[16] Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain,
Ethan Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-
Johnson, et al. 2022. Language models (mostly) know what they know. arXiv
preprint arXiv:2207.05221 (2022).

[17] Adam Tauman Kalai and Santosh S Vempala. 2023. Calibrated Language Models
Must Hallucinate. arXiv preprint arXiv:2311.14648 (2023).

[18] Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023. Semantic uncertainty:
Linguistic invariances for uncertainty estimation in natural language generation.
arXiv preprint arXiv:2302.09664 (2023).

[19] Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. 2023.
Halueval: A large-scale hallucination evaluation benchmark for large language
models. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing. 6449–6464.

[20] Xianming Li and Jing Li. 2023. AnglE-optimized Text Embeddings. arXiv preprint
arXiv:2309.12871 (2023).

[21] Stephanie Lin, Jacob Hilton, and Owain Evans. 2022. Teaching models to express
their uncertainty in words. arXiv preprint arXiv:2205.14334 (2022).

[22] Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. 2023. Generating with Confidence:
Uncertainty Quantification for Black-box Large Language Models. arXiv preprint
arXiv:2305.19187 (2023).

[23] Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang, and Li
Zhang. 2024. Exploring and Evaluating Hallucinations in LLM-Powered Code
Generation. arXiv preprint arXiv:2404.00971 (2024).

[24] Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao, Zhifang Sui, Weizhu Chen, and
Bill Dolan. 2021. A token-level reference-free hallucination detection benchmark
for free-form text generation. arXiv preprint arXiv:2104.08704 (2021).

[25] Potsawee Manakul, Adian Liusie, and Mark JF Gales. 2023. Selfcheckgpt: Zero-
resource black-box hallucination detection for generative large language models.
arXiv preprint arXiv:2303.08896 (2023).

[26] Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. 2020.
On faithfulness and factuality in abstractive summarization. arXiv preprint
arXiv:2005.00661 (2020).

[27] LelandMcInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. 2018. UMAP:
Uniform Manifold Approximation and Projection. The Journal of Open Source
Software 3, 29 (2018), 861.

[28] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. 2022. MTEB:
Massive Text Embedding Benchmark. arXiv preprint arXiv:2210.07316 (2022).
https://doi.org/10.48550/ARXIV.2210.07316

[29] John Platt et al. 1999. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. Advances in large margin classifiers
10, 3 (1999), 61–74.

[30] Aaron Roth. 2022. Uncertain: Modern topics in uncertainty estimation.
[31] Gideon Schwarz. 1978. Estimating the dimension of a model. The annals of

statistics (1978), 461–464.
[32] Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. 2021.

Retrieval augmentation reduces hallucination in conversation. arXiv preprint
arXiv:2104.07567 (2021).

[33] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb,
Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, et al. 2022. Beyond the imitation game: Quantifying and
extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615
(2022).

[34] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal.
2018. FEVER: a large-scale dataset for fact extraction and VERification. arXiv
preprint arXiv:1803.05355 (2018).

[35] Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu
Yao, Chelsea Finn, and Christopher D Manning. 2023. Just ask for calibration:
Strategies for eliciting calibrated confidence scores from language models fine-
tuned with human feedback. arXiv preprint arXiv:2305.14975 (2023).

[36] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[37] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2021. Finetuned language models
are zero-shot learners. arXiv preprint arXiv:2109.01652 (2021).

[38] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019).

[39] Yijun Xiao and William Yang Wang. 2021. On hallucination and predictive
uncertainty in conditional language generation. arXiv preprint arXiv:2103.15025
(2021).

[40] Bianca Zadrozny and Charles Elkan. 2001. Obtaining calibrated probability
estimates from decision trees and naive bayesian classifiers. In Icml, Vol. 1. 609–
616.

[41] Bianca Zadrozny and Charles Elkan. 2002. Transforming classifier scores into ac-
curate multiclass probability estimates. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining. 694–699.

[42] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting
Huang, Enbo Zhao, Yu Zhang, Yulong Chen, et al. 2023. Siren’s Song in the AI
Ocean: A Survey on Hallucination in Large Language Models. arXiv preprint
arXiv:2309.01219 (2023).

[43] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

A ADDITIONAL RESULTS

https://github.com/openlm-research/open_llama
https://doi.org/10.48550/ARXIV.2210.07316

Cost-Effective Hallucination Detection for LLMs
KDD 2024 GenAI Evaluation Workshop, ,

Table 3: Hallucination detection results on all datasets of scoring methods without calibration. Methods that are not applicable
for the given dataset are marked as —.

TriviaQA HaluEval BIG-Bench FEVER

Scoring Method Brier F1 Acc Brier F1 Acc Brier F1 Acc Brier F1 Acc

P(True) 0.2467 0.8267 0.7487 0.3850 0.7195 0.6110 0.3631 0.4981 0.6117 0.0738 0.9241 0.9248
P(True) Verbalized 0.2333 0.8056 0.7269 0.3957 0.6983 0.5645 0.3532 0.5531 0.5245 0.0807 0.9166 0.9163
P(InputContradict) 0.2526 0.8129 0.7392 0.4045 0.7103 0.5910 0.3603 0.4469 0.6001 0.0578 0.9406 0.9398
P(SelfContradict) 0.6438 0.1668 0.3402 0.4825 0.6635 0.5105 0.4238 0.2332 0.5257 0.2101 0.8037 0.7801
P(FactContradict) 0.5571 0.3653 0.4152 0.4634 0.6708 0.5260 0.4076 0.2066 0.5389 0.1952 0.8100 0.7972

Inverse Perplexity 0.5358 0.1286 0.3541 0.0118 0.4980 0.3090 0.0784 0.1771 0.6353 0.4381 0.0055 0.4847

NLI (DeBERTa) 0.3666 0.5914 0.5102 0.4676 0.4910 0.2423 0.0086 0.1943 0.5413 0.2493 0.5987 0.5175

SelfCheckGPT-NLI 0.1503 0.8654 0.8022 — — — — — — — — —
HallucinationRail 0.2698 0.8240 0.7086 — — — — — — — — —
SimilarityDegree 0.1854 0.8488 0.7612 — — — — — — — — —

Table 4: Hallucination detection results on all datasets of scoring methods after calibration via multicalibration. Methods that
are not applicable for the given dataset are marked as —.

TriviaQA HaluEval BIG-Bench FEVER

Scoring Method Brier F1 Acc Brier F1 Acc Brier F1 Acc Brier F1 Acc

Mixtral-8x7B-Instruct-v0.1

P(True) 0.1543 0.8695 0.8089 0.1959 0.7618 0.6970 0.2081 0.6347 0.6399 0.0769 0.9143 0.9145
P(True) Verbalized 0.1499 0.8617 0.7983 0.2235 0.7158 0.6220 0.2177 0.5907 0.6290 0.0682 0.9221 0.9212
P(InputContradict) 0.1772 0.8493 0.7687 0.2011 0.7547 0.6795 0.2177 0.5907 0.6290 0.0665 0.9288 0.9277
P(SelfContradict) 0.2136 0.8151 0.6879 0.2458 0.6613 0.5550 0.2425 0.0000 0.6145 0.1603 0.8187 0.7979
P(FactContradict) 0.2192 0.8151 0.6879 0.2387 0.6487 0.6030 0.2426 0.2923 0.5586 0.1470 0.8196 0.8190
Inverse Perplexity 0.1894 0.8035 0.7175 0.2497 0.0672 0.5005 0.2455 0.2747 0.6192 0.2355 0.5188 0.5841

OpenLLaMA 13B

P(True) 0.2133 0.8151 0.6879 0.2502 0.6640 0.5050 0.2495 0.0655 0.6047 0.2512 0.6402 0.5121
P(True) Verbalized 0.2217 0.8151 0.6879 0.2502 0.6707 0.5045 0.2359 0.0620 0.6157 0.2486 0.6814 0.5167
P(InputContradict) 0.2111 0.8150 0.6882 0.2502 0.6707 0.5045 0.2432 0.1730 0.5972 0.2500 0.6358 0.5207
P(SelfContradict) 0.2179 0.8146 0.6874 0.2473 0.6743 0.5300 0.2440 0.4357 0.6099 0.2492 0.6547 0.4986
P(FactContradict) 0.2218 0.8151 0.6879 0.2490 0.5972 0.5070 0.2414 0.2766 0.5926 0.2478 0.5577 0.5381
Inverse Perplexity 0.2191 0.8151 0.6879 0.2466 0.2932 0.5300 0.2400 0.0933 0.6076 0.2404 0.4877 0.5688

Falcon-7B-Instruct

P(True) 0.2128 0.8147 0.6874 0.2487 0.2794 0.5305 0.2395 0.0030 0.6145 0.2478 0.6198 0.5527
P(True) Verbalized 0.2171 0.8151 0.6879 0.2509 0.6709 0.5055 0.2455 0.0030 0.6151 0.2505 0.6782 0.5153
P(InputContradict) 0.2169 0.8127 0.6857 0.2475 0.3852 0.5515 0.2413 0.0000 0.6145 0.2493 0.5705 0.5203
P(SelfContradict) 0.2138 0.8072 0.6826 0.2493 0.5307 0.5330 0.2347 0.0000 0.6145 0.2364 0.6897 0.6091
P(FactContradict) 0.2135 0.8151 0.6879 0.2265 0.5802 0.6230 0.2364 0.0000 0.6145 0.2358 0.6521 0.6030
Inverse Perplexity 0.2160 0.8151 0.6879 0.2491 0.3705 0.5260 0.2497 0.0809 0.5938 0.2408 0.4853 0.5752

	Abstract
	1 Introduction
	2 Detecting LLM Hallucinations
	2.1 Formalizing Hallucination Detection
	2.2 Scoring Methods
	2.3 Single-generation
	2.4 Multi-generation
	2.5 Calibration
	2.6 Multi-Scoring: Combining Scores
	2.7 Cost-Effective Multi-Scoring

	3 Experiments
	3.1 Experimental Setup
	3.2 Individual Scoring Methods
	3.3 Multi-Scoring
	3.4 Cost-effective Multi-Scoring
	3.5 Exploration of Relationships between Scores
	3.6 Experiments across Different LLMs
	3.7 The Importance of Calibration
	3.8 Exploring Multi-Generation Assumptions

	4 Conclusion
	References
	A Additional Results

